트레이닝 성능 향상을 위한 그래디언트 중앙화
- 원본 링크 : https://keras.io/examples/vision/gradient_centralization/
- 최종 확인 : 2024-11-21
저자 : Rishit Dagli
생성일 : 2021/06/18
최종 편집일 : 2023/07/25
설명 : Implement Gradient Centralization to improve training performance of DNNs.
Introduction
This example implements Gradient Centralization, a new optimization technique for Deep Neural Networks by Yong et al., and demonstrates it on Laurence Moroney’s Horses or Humans Dataset. Gradient Centralization can both speedup training process and improve the final generalization performance of DNNs. It operates directly on gradients by centralizing the gradient vectors to have zero mean. Gradient Centralization morever improves the Lipschitzness of the loss function and its gradient so that the training process becomes more efficient and stable.
This example requires tensorflow_datasets
which can be installed with this command:
pip install tensorflow-datasets
Setup
from time import time
import keras
from keras import layers
from keras.optimizers import RMSprop
from keras import ops
from tensorflow import data as tf_data
import tensorflow_datasets as tfds
Prepare the data
For this example, we will be using the Horses or Humans dataset.
num_classes = 2
input_shape = (300, 300, 3)
dataset_name = "horses_or_humans"
batch_size = 128
AUTOTUNE = tf_data.AUTOTUNE
(train_ds, test_ds), metadata = tfds.load(
name=dataset_name,
split=[tfds.Split.TRAIN, tfds.Split.TEST],
with_info=True,
as_supervised=True,
)
print(f"Image shape: {metadata.features['image'].shape}")
print(f"Training images: {metadata.splits['train'].num_examples}")
print(f"Test images: {metadata.splits['test'].num_examples}")
결과
Image shape: (300, 300, 3)
Training images: 1027
Test images: 256
Use Data Augmentation
We will rescale the data to [0, 1]
and perform simple augmentations to our data.
rescale = layers.Rescaling(1.0 / 255)
data_augmentation = [
layers.RandomFlip("horizontal_and_vertical"),
layers.RandomRotation(0.3),
layers.RandomZoom(0.2),
]
# Helper to apply augmentation
def apply_aug(x):
for aug in data_augmentation:
x = aug(x)
return x
def prepare(ds, shuffle=False, augment=False):
# Rescale dataset
ds = ds.map(lambda x, y: (rescale(x), y), num_parallel_calls=AUTOTUNE)
if shuffle:
ds = ds.shuffle(1024)
# Batch dataset
ds = ds.batch(batch_size)
# Use data augmentation only on the training set
if augment:
ds = ds.map(
lambda x, y: (apply_aug(x), y),
num_parallel_calls=AUTOTUNE,
)
# Use buffered prefecting
return ds.prefetch(buffer_size=AUTOTUNE)
Rescale and augment the data
train_ds = prepare(train_ds, shuffle=True, augment=True)
test_ds = prepare(test_ds)
Define a model
In this section we will define a Convolutional neural network.
model = keras.Sequential(
[
layers.Input(shape=input_shape),
layers.Conv2D(16, (3, 3), activation="relu"),
layers.MaxPooling2D(2, 2),
layers.Conv2D(32, (3, 3), activation="relu"),
layers.Dropout(0.5),
layers.MaxPooling2D(2, 2),
layers.Conv2D(64, (3, 3), activation="relu"),
layers.Dropout(0.5),
layers.MaxPooling2D(2, 2),
layers.Conv2D(64, (3, 3), activation="relu"),
layers.MaxPooling2D(2, 2),
layers.Conv2D(64, (3, 3), activation="relu"),
layers.MaxPooling2D(2, 2),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(512, activation="relu"),
layers.Dense(1, activation="sigmoid"),
]
)
Implement Gradient Centralization
We will now subclass the RMSProp
optimizer class modifying the keras.optimizers.Optimizer.get_gradients()
method where we now implement Gradient Centralization. On a high level the idea is that let us say we obtain our gradients through back propogation for a Dense or Convolution layer we then compute the mean of the column vectors of the weight matrix, and then remove the mean from each column vector.
The experiments in this paper on various applications, including general image classification, fine-grained image classification, detection and segmentation and Person ReID demonstrate that GC can consistently improve the performance of DNN learning.
Also, for simplicity at the moment we are not implementing gradient cliiping functionality, however this quite easy to implement.
At the moment we are just creating a subclass for the RMSProp
optimizer however you could easily reproduce this for any other optimizer or on a custom optimizer in the same way. We will be using this class in the later section when we train a model with Gradient Centralization.
class GCRMSprop(RMSprop):
def get_gradients(self, loss, params):
# We here just provide a modified get_gradients() function since we are
# trying to just compute the centralized gradients.
grads = []
gradients = super().get_gradients()
for grad in gradients:
grad_len = len(grad.shape)
if grad_len > 1:
axis = list(range(grad_len - 1))
grad -= ops.mean(grad, axis=axis, keep_dims=True)
grads.append(grad)
return grads
optimizer = GCRMSprop(learning_rate=1e-4)
Training utilities
We will also create a callback which allows us to easily measure the total training time and the time taken for each epoch since we are interested in comparing the effect of Gradient Centralization on the model we built above.
class TimeHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.times = []
def on_epoch_begin(self, batch, logs={}):
self.epoch_time_start = time()
def on_epoch_end(self, batch, logs={}):
self.times.append(time() - self.epoch_time_start)
Train the model without GC
We now train the model we built earlier without Gradient Centralization which we can compare to the training performance of the model trained with Gradient Centralization.
time_callback_no_gc = TimeHistory()
model.compile(
loss="binary_crossentropy",
optimizer=RMSprop(learning_rate=1e-4),
metrics=["accuracy"],
)
model.summary()
결과
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ conv2d (Conv2D) │ (None, 298, 298, 16) │ 448 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d (MaxPooling2D) │ (None, 149, 149, 16) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_1 (Conv2D) │ (None, 147, 147, 32) │ 4,640 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout (Dropout) │ (None, 147, 147, 32) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_1 (MaxPooling2D) │ (None, 73, 73, 32) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_2 (Conv2D) │ (None, 71, 71, 64) │ 18,496 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout_1 (Dropout) │ (None, 71, 71, 64) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_2 (MaxPooling2D) │ (None, 35, 35, 64) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_3 (Conv2D) │ (None, 33, 33, 64) │ 36,928 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_3 (MaxPooling2D) │ (None, 16, 16, 64) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_4 (Conv2D) │ (None, 14, 14, 64) │ 36,928 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_4 (MaxPooling2D) │ (None, 7, 7, 64) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten (Flatten) │ (None, 3136) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout_2 (Dropout) │ (None, 3136) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense (Dense) │ (None, 512) │ 1,606,144 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_1 (Dense) │ (None, 1) │ 513 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
Total params: 1,704,097 (6.50 MB)
Trainable params: 1,704,097 (6.50 MB)
Non-trainable params: 0 (0.00 B)
We also save the history since we later want to compare our model trained with and not trained with Gradient Centralization
history_no_gc = model.fit(
train_ds, epochs=10, verbose=1, callbacks=[time_callback_no_gc]
)
결과
Epoch 1/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 24s 778ms/step - accuracy: 0.4772 - loss: 0.7405
Epoch 2/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 10s 597ms/step - accuracy: 0.5434 - loss: 0.6861
Epoch 3/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 10s 700ms/step - accuracy: 0.5402 - loss: 0.6911
Epoch 4/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 9s 586ms/step - accuracy: 0.5884 - loss: 0.6788
Epoch 5/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 9s 588ms/step - accuracy: 0.6570 - loss: 0.6564
Epoch 6/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 10s 591ms/step - accuracy: 0.6671 - loss: 0.6395
Epoch 7/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 10s 594ms/step - accuracy: 0.7010 - loss: 0.6161
Epoch 8/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 9s 593ms/step - accuracy: 0.6946 - loss: 0.6129
Epoch 9/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 10s 699ms/step - accuracy: 0.6972 - loss: 0.5987
Epoch 10/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 11s 623ms/step - accuracy: 0.6839 - loss: 0.6197
Train the model with GC
We will now train the same model, this time using Gradient Centralization, notice our optimizer is the one using Gradient Centralization this time.
time_callback_gc = TimeHistory()
model.compile(loss="binary_crossentropy", optimizer=optimizer, metrics=["accuracy"])
model.summary()
history_gc = model.fit(train_ds, epochs=10, verbose=1, callbacks=[time_callback_gc])
결과
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ conv2d (Conv2D) │ (None, 298, 298, 16) │ 448 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d (MaxPooling2D) │ (None, 149, 149, 16) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_1 (Conv2D) │ (None, 147, 147, 32) │ 4,640 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout (Dropout) │ (None, 147, 147, 32) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_1 (MaxPooling2D) │ (None, 73, 73, 32) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_2 (Conv2D) │ (None, 71, 71, 64) │ 18,496 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout_1 (Dropout) │ (None, 71, 71, 64) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_2 (MaxPooling2D) │ (None, 35, 35, 64) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_3 (Conv2D) │ (None, 33, 33, 64) │ 36,928 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_3 (MaxPooling2D) │ (None, 16, 16, 64) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_4 (Conv2D) │ (None, 14, 14, 64) │ 36,928 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_4 (MaxPooling2D) │ (None, 7, 7, 64) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten (Flatten) │ (None, 3136) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout_2 (Dropout) │ (None, 3136) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense (Dense) │ (None, 512) │ 1,606,144 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_1 (Dense) │ (None, 1) │ 513 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
Total params: 1,704,097 (6.50 MB)
Trainable params: 1,704,097 (6.50 MB)
Non-trainable params: 0 (0.00 B)
Epoch 1/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 12s 649ms/step - accuracy: 0.7118 - loss: 0.5594
Epoch 2/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 10s 592ms/step - accuracy: 0.7249 - loss: 0.5817
Epoch 3/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 9s 587ms/step - accuracy: 0.8060 - loss: 0.4448
Epoch 4/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 10s 693ms/step - accuracy: 0.8472 - loss: 0.4051
Epoch 5/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 10s 594ms/step - accuracy: 0.8386 - loss: 0.3978
Epoch 6/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 10s 593ms/step - accuracy: 0.8442 - loss: 0.3976
Epoch 7/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 9s 585ms/step - accuracy: 0.7409 - loss: 0.6626
Epoch 8/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 10s 587ms/step - accuracy: 0.8191 - loss: 0.4357
Epoch 9/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 9s 587ms/step - accuracy: 0.8248 - loss: 0.3974
Epoch 10/10
9/9 ━━━━━━━━━━━━━━━━━━━━ 10s 646ms/step - accuracy: 0.8022 - loss: 0.4589
Comparing performance
print("Not using Gradient Centralization")
print(f"Loss: {history_no_gc.history['loss'][-1]}")
print(f"Accuracy: {history_no_gc.history['accuracy'][-1]}")
print(f"Training Time: {sum(time_callback_no_gc.times)}")
print("Using Gradient Centralization")
print(f"Loss: {history_gc.history['loss'][-1]}")
print(f"Accuracy: {history_gc.history['accuracy'][-1]}")
print(f"Training Time: {sum(time_callback_gc.times)}")
결과
Not using Gradient Centralization
Loss: 0.5345584154129028
Accuracy: 0.7604166865348816
Training Time: 112.48799777030945
Using Gradient Centralization
Loss: 0.4014038145542145
Accuracy: 0.8153935074806213
Training Time: 98.31573963165283
Readers are encouraged to try out Gradient Centralization on different datasets from different domains and experiment with it’s effect. You are strongly advised to check out the original paper as well - the authors present several studies on Gradient Centralization showing how it can improve general performance, generalization, training time as well as more efficient.
Many thanks to Ali Mustufa Shaikh for reviewing this implementation.