트레이너 패턴

저자 : nkovela1
생성일 : 2022/09/19
최종 편집일 : 2022/09/26
설명 : Guide on how to share a custom training step across multiple Keras models.

ⓘ 이 예제는 Keras 3를 사용합니다.

Introduction

This example shows how to create a custom training step using the “Trainer pattern”, which can then be shared across multiple Keras models. This pattern overrides the train_step() method of the keras.Model class, allowing for training loops beyond plain supervised learning.

The Trainer pattern can also easily be adapted to more complex models with larger custom training steps, such as this end-to-end GAN model, by putting the custom training step in the Trainer class definition.

Setup

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import tensorflow as tf
import keras

# Load MNIST dataset and standardize the data
mnist = keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

Define the Trainer class

A custom training and evaluation step can be created by overriding the train_step() and test_step() method of a Model subclass:

class MyTrainer(keras.Model):
    def __init__(self, model):
        super().__init__()
        self.model = model
        # Create loss and metrics here.
        self.loss_fn = keras.losses.SparseCategoricalCrossentropy()
        self.accuracy_metric = keras.metrics.SparseCategoricalAccuracy()

    @property
    def metrics(self):
        # List metrics here.
        return [self.accuracy_metric]

    def train_step(self, data):
        x, y = data
        with tf.GradientTape() as tape:
            y_pred = self.model(x, training=True)  # Forward pass
            # Compute loss value
            loss = self.loss_fn(y, y_pred)

        # Compute gradients
        trainable_vars = self.trainable_variables
        gradients = tape.gradient(loss, trainable_vars)

        # Update weights
        self.optimizer.apply_gradients(zip(gradients, trainable_vars))

        # Update metrics
        for metric in self.metrics:
            metric.update_state(y, y_pred)

        # Return a dict mapping metric names to current value.
        return {m.name: m.result() for m in self.metrics}

    def test_step(self, data):
        x, y = data

        # Inference step
        y_pred = self.model(x, training=False)

        # Update metrics
        for metric in self.metrics:
            metric.update_state(y, y_pred)
        return {m.name: m.result() for m in self.metrics}

    def call(self, x):
        # Equivalent to `call()` of the wrapped keras.Model
        x = self.model(x)
        return x

Define multiple models to share the custom training step

Let’s define two different models that can share our Trainer class and its custom train_step():

# A model defined using Sequential API
model_a = keras.models.Sequential(
    [
        keras.layers.Flatten(input_shape=(28, 28)),
        keras.layers.Dense(256, activation="relu"),
        keras.layers.Dropout(0.2),
        keras.layers.Dense(10, activation="softmax"),
    ]
)

# A model defined using Functional API
func_input = keras.Input(shape=(28, 28, 1))
x = keras.layers.Flatten(input_shape=(28, 28))(func_input)
x = keras.layers.Dense(512, activation="relu")(x)
x = keras.layers.Dropout(0.4)(x)
func_output = keras.layers.Dense(10, activation="softmax")(x)

model_b = keras.Model(func_input, func_output)

Create Trainer class objects from the models

trainer_1 = MyTrainer(model_a)
trainer_2 = MyTrainer(model_b)

Compile and fit the models to the MNIST dataset

trainer_1.compile(optimizer=keras.optimizers.SGD())
trainer_1.fit(
    x_train, y_train, epochs=5, batch_size=64, validation_data=(x_test, y_test)
)

trainer_2.compile(optimizer=keras.optimizers.Adam())
trainer_2.fit(
    x_train, y_train, epochs=5, batch_size=64, validation_data=(x_test, y_test)
)
결과
Epoch 1/5
...
Epoch 4/5
 938/938 ━━━━━━━━━━━━━━━━━━━━ 1s 1ms/step - sparse_categorical_accuracy: 0.9770 - val_sparse_categorical_accuracy: 0.9770
Epoch 5/5
 938/938 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - sparse_categorical_accuracy: 0.9805 - val_sparse_categorical_accuracy: 0.9789

<keras.src.callbacks.history.History at 0x7efe405fe560>