Conv2D 레이어 컨볼루션 연산 커스터마이즈

Conv2D 레이어의 컨볼루션 연산 커스터마이즈하기

저자 : lukewood
생성일 : 2021/03/11
최종 편집일 : 2021/03/11
설명 : This example shows how to implement custom convolution layers using the Conv.convolution_op() API.

ⓘ 이 예제는 Keras 3를 사용합니다.

Introduction

You may sometimes need to implement custom versions of convolution layers like Conv1D and Conv2D. Keras enables you do this without implementing the entire layer from scratch: you can reuse most of the base convolution layer and just customize the convolution op itself via the convolution_op() method.

This method was introduced in Keras 2.7. So before using the convolution_op() API, ensure that you are running Keras version 2.7.0 or greater.

A Simple StandardizedConv2D implementation

There are two ways to use the Conv.convolution_op() API. The first way is to override the convolution_op() method on a convolution layer subclass. Using this approach, we can quickly implement a StandardizedConv2D as shown below.

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import tensorflow as tf
import keras
from keras import layers
import numpy as np


class StandardizedConv2DWithOverride(layers.Conv2D):
    def convolution_op(self, inputs, kernel):
        mean, var = tf.nn.moments(kernel, axes=[0, 1, 2], keepdims=True)
        return tf.nn.conv2d(
            inputs,
            (kernel - mean) / tf.sqrt(var + 1e-10),
            padding="VALID",
            strides=list(self.strides),
            name=self.__class__.__name__,
        )

The other way to use the Conv.convolution_op() API is to directly call the convolution_op() method from the call() method of a convolution layer subclass. A comparable class implemented using this approach is shown below.

class StandardizedConv2DWithCall(layers.Conv2D):
    def call(self, inputs):
        mean, var = tf.nn.moments(self.kernel, axes=[0, 1, 2], keepdims=True)
        result = self.convolution_op(
            inputs, (self.kernel - mean) / tf.sqrt(var + 1e-10)
        )
        if self.use_bias:
            result = result + self.bias
        return result

Example Usage

Both of these layers work as drop-in replacements for Conv2D. The following demonstration performs classification on the MNIST dataset.

# Model / data parameters
num_classes = 10
input_shape = (28, 28, 1)

# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = keras.Sequential(
    [
        keras.layers.Input(shape=input_shape),
        StandardizedConv2DWithCall(32, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        StandardizedConv2DWithOverride(64, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Flatten(),
        layers.Dropout(0.5),
        layers.Dense(num_classes, activation="softmax"),
    ]
)

model.summary()
결과
x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                    ┃ Output Shape              ┃    Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ standardized_conv2d_with_call   │ (None, 26, 26, 32)        │        320 │
│ (StandardizedConv2DWithCall)    │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d (MaxPooling2D)    │ (None, 13, 13, 32)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ standardized_conv2d_with_overr… │ (None, 11, 11, 64)        │     18,496 │
│ (StandardizedConv2DWithOverrid… │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_1 (MaxPooling2D)  │ (None, 5, 5, 64)          │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten (Flatten)               │ (None, 1600)              │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout (Dropout)               │ (None, 1600)              │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense (Dense)                   │ (None, 10)                │     16,010 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 34,826 (136.04 KB)
 Trainable params: 34,826 (136.04 KB)
 Non-trainable params: 0 (0.00 B)
batch_size = 128
epochs = 5

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

model.fit(x_train, y_train, batch_size=batch_size, epochs=5, validation_split=0.1)
결과
Epoch 1/5
  64/422 ━━━━━━━━━━━━━━━━━━━━  0s 2ms/step - accuracy: 0.4439 - loss: 13.1274

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1699557098.952525   26800 device_compiler.h:187] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.

 422/422 ━━━━━━━━━━━━━━━━━━━━ 10s 14ms/step - accuracy: 0.7277 - loss: 4.5649 - val_accuracy: 0.9690 - val_loss: 0.1140
Epoch 2/5
 422/422 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - accuracy: 0.9311 - loss: 0.2493 - val_accuracy: 0.9798 - val_loss: 0.0795
Epoch 3/5
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9531 - loss: 0.1655 - val_accuracy: 0.9838 - val_loss: 0.0610
Epoch 4/5
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9652 - loss: 0.1201 - val_accuracy: 0.9847 - val_loss: 0.0577
Epoch 5/5
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step - accuracy: 0.9687 - loss: 0.1059 - val_accuracy: 0.9870 - val_loss: 0.0525

<keras.src.callbacks.history.History at 0x7fed258da200>

Conclusion

The Conv.convolution_op() API provides an easy and readable way to implement custom convolution layers. A StandardizedConvolution implementation using the API is quite terse, consisting of only four lines of code.