특징 매칭을 사용한 MelGAN 기반 스펙트로그램 반전
- 원본 링크 : https://keras.io/examples/audio/melgan_spectrogram_inversion/
- 최종 확인 : 2024-11-23
저자 : Darshan Deshpande
생성일 : 2021/09/02
최종 편집일 : 2021/09/15
설명 : Inversion of audio from mel-spectrograms using the MelGAN architecture and feature matching.
Introduction
Autoregressive vocoders have been ubiquitous for a majority of the history of speech processing, but for most of their existence they have lacked parallelism. MelGAN is a non-autoregressive, fully convolutional vocoder architecture used for purposes ranging from spectral inversion and speech enhancement to present-day state-of-the-art speech synthesis when used as a decoder with models like Tacotron2 or FastSpeech that convert text to mel spectrograms.
In this tutorial, we will have a look at the MelGAN architecture and how it can achieve fast spectral inversion, i.e. conversion of spectrograms to audio waves. The MelGAN implemented in this tutorial is similar to the original implementation with only the difference of method of padding for convolutions where we will use ‘same’ instead of reflect padding.
Importing and Defining Hyperparameters
!pip install -qqq tensorflow_addons
!pip install -qqq tensorflow-io
import tensorflow as tf
import tensorflow_io as tfio
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow_addons import layers as addon_layers
# Setting logger level to avoid input shape warnings
tf.get_logger().setLevel("ERROR")
# Defining hyperparameters
DESIRED_SAMPLES = 8192
LEARNING_RATE_GEN = 1e-5
LEARNING_RATE_DISC = 1e-6
BATCH_SIZE = 16
mse = keras.losses.MeanSquaredError()
mae = keras.losses.MeanAbsoluteError()
결과
|████████████████████████████████| 1.1 MB 5.1 MB/s
|████████████████████████████████| 22.7 MB 1.7 MB/s
|████████████████████████████████| 2.1 MB 36.2 MB/s
Loading the Dataset
This example uses the LJSpeech dataset.
The LJSpeech dataset is primarily used for text-to-speech and consists of 13,100 discrete speech samples taken from 7 non-fiction books, having a total length of approximately 24 hours. The MelGAN training is only concerned with the audio waves so we process only the WAV files and ignore the audio annotations.
!wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2
!tar -xf /content/LJSpeech-1.1.tar.bz2
결과
--2021-09-16 11:45:24-- https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2
Resolving data.keithito.com (data.keithito.com)... 174.138.79.61
Connecting to data.keithito.com (data.keithito.com)|174.138.79.61|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2748572632 (2.6G) [application/octet-stream]
Saving to: ‘LJSpeech-1.1.tar.bz2’
LJSpeech-1.1.tar.bz 100%[===================>] 2.56G 68.3MB/s in 36s
2021-09-16 11:46:01 (72.2 MB/s) - ‘LJSpeech-1.1.tar.bz2’ saved [2748572632/2748572632]
We create a tf.data.Dataset
to load and process the audio files on the fly. The preprocess()
function takes the file path as input and returns two instances of the wave, one for input and one as the ground truth for comparison. The input wave will be mapped to a spectrogram using the custom MelSpec
layer as shown later in this example.
# Splitting the dataset into training and testing splits
wavs = tf.io.gfile.glob("LJSpeech-1.1/wavs/*.wav")
print(f"Number of audio files: {len(wavs)}")
# Mapper function for loading the audio. This function returns two instances of the wave
def preprocess(filename):
audio = tf.audio.decode_wav(tf.io.read_file(filename), 1, DESIRED_SAMPLES).audio
return audio, audio
# Create tf.data.Dataset objects and apply preprocessing
train_dataset = tf.data.Dataset.from_tensor_slices((wavs,))
train_dataset = train_dataset.map(preprocess, num_parallel_calls=tf.data.AUTOTUNE)
결과
Number of audio files: 13100
Defining custom layers for MelGAN
The MelGAN architecture consists of 3 main modules:
- The residual block
- Dilated convolutional block
- Discriminator block
Since the network takes a mel-spectrogram as input, we will create an additional custom layer which can convert the raw audio wave to a spectrogram on-the-fly. We use the raw audio tensor from train_dataset
and map it to a mel-spectrogram using the MelSpec
layer below.
# Custom keras layer for on-the-fly audio to spectrogram conversion
class MelSpec(layers.Layer):
def __init__(
self,
frame_length=1024,
frame_step=256,
fft_length=None,
sampling_rate=22050,
num_mel_channels=80,
freq_min=125,
freq_max=7600,
**kwargs,
):
super().__init__(**kwargs)
self.frame_length = frame_length
self.frame_step = frame_step
self.fft_length = fft_length
self.sampling_rate = sampling_rate
self.num_mel_channels = num_mel_channels
self.freq_min = freq_min
self.freq_max = freq_max
# Defining mel filter. This filter will be multiplied with the STFT output
self.mel_filterbank = tf.signal.linear_to_mel_weight_matrix(
num_mel_bins=self.num_mel_channels,
num_spectrogram_bins=self.frame_length // 2 + 1,
sample_rate=self.sampling_rate,
lower_edge_hertz=self.freq_min,
upper_edge_hertz=self.freq_max,
)
def call(self, audio, training=True):
# We will only perform the transformation during training.
if training:
# Taking the Short Time Fourier Transform. Ensure that the audio is padded.
# In the paper, the STFT output is padded using the 'REFLECT' strategy.
stft = tf.signal.stft(
tf.squeeze(audio, -1),
self.frame_length,
self.frame_step,
self.fft_length,
pad_end=True,
)
# Taking the magnitude of the STFT output
magnitude = tf.abs(stft)
# Multiplying the Mel-filterbank with the magnitude and scaling it using the db scale
mel = tf.matmul(tf.square(magnitude), self.mel_filterbank)
log_mel_spec = tfio.audio.dbscale(mel, top_db=80)
return log_mel_spec
else:
return audio
def get_config(self):
config = super().get_config()
config.update(
{
"frame_length": self.frame_length,
"frame_step": self.frame_step,
"fft_length": self.fft_length,
"sampling_rate": self.sampling_rate,
"num_mel_channels": self.num_mel_channels,
"freq_min": self.freq_min,
"freq_max": self.freq_max,
}
)
return config
The residual convolutional block extensively uses dilations and has a total receptive field of 27 timesteps per block. The dilations must grow as a power of the kernel_size
to ensure reduction of hissing noise in the output. The network proposed by the paper is as follows:
# Creating the residual stack block
def residual_stack(input, filters):
"""Convolutional residual stack with weight normalization.
Args:
filters: int, determines filter size for the residual stack.
Returns:
Residual stack output.
"""
c1 = addon_layers.WeightNormalization(
layers.Conv1D(filters, 3, dilation_rate=1, padding="same"), data_init=False
)(input)
lrelu1 = layers.LeakyReLU()(c1)
c2 = addon_layers.WeightNormalization(
layers.Conv1D(filters, 3, dilation_rate=1, padding="same"), data_init=False
)(lrelu1)
add1 = layers.Add()([c2, input])
lrelu2 = layers.LeakyReLU()(add1)
c3 = addon_layers.WeightNormalization(
layers.Conv1D(filters, 3, dilation_rate=3, padding="same"), data_init=False
)(lrelu2)
lrelu3 = layers.LeakyReLU()(c3)
c4 = addon_layers.WeightNormalization(
layers.Conv1D(filters, 3, dilation_rate=1, padding="same"), data_init=False
)(lrelu3)
add2 = layers.Add()([add1, c4])
lrelu4 = layers.LeakyReLU()(add2)
c5 = addon_layers.WeightNormalization(
layers.Conv1D(filters, 3, dilation_rate=9, padding="same"), data_init=False
)(lrelu4)
lrelu5 = layers.LeakyReLU()(c5)
c6 = addon_layers.WeightNormalization(
layers.Conv1D(filters, 3, dilation_rate=1, padding="same"), data_init=False
)(lrelu5)
add3 = layers.Add()([c6, add2])
return add3
Each convolutional block uses the dilations offered by the residual stack and upsamples the input data by the upsampling_factor
.
# Dilated convolutional block consisting of the Residual stack
def conv_block(input, conv_dim, upsampling_factor):
"""Dilated Convolutional Block with weight normalization.
Args:
conv_dim: int, determines filter size for the block.
upsampling_factor: int, scale for upsampling.
Returns:
Dilated convolution block.
"""
conv_t = addon_layers.WeightNormalization(
layers.Conv1DTranspose(conv_dim, 16, upsampling_factor, padding="same"),
data_init=False,
)(input)
lrelu1 = layers.LeakyReLU()(conv_t)
res_stack = residual_stack(lrelu1, conv_dim)
lrelu2 = layers.LeakyReLU()(res_stack)
return lrelu2
The discriminator block consists of convolutions and downsampling layers. This block is essential for the implementation of the feature matching technique.
Each discriminator outputs a list of feature maps that will be compared during training to compute the feature matching loss.
def discriminator_block(input):
conv1 = addon_layers.WeightNormalization(
layers.Conv1D(16, 15, 1, "same"), data_init=False
)(input)
lrelu1 = layers.LeakyReLU()(conv1)
conv2 = addon_layers.WeightNormalization(
layers.Conv1D(64, 41, 4, "same", groups=4), data_init=False
)(lrelu1)
lrelu2 = layers.LeakyReLU()(conv2)
conv3 = addon_layers.WeightNormalization(
layers.Conv1D(256, 41, 4, "same", groups=16), data_init=False
)(lrelu2)
lrelu3 = layers.LeakyReLU()(conv3)
conv4 = addon_layers.WeightNormalization(
layers.Conv1D(1024, 41, 4, "same", groups=64), data_init=False
)(lrelu3)
lrelu4 = layers.LeakyReLU()(conv4)
conv5 = addon_layers.WeightNormalization(
layers.Conv1D(1024, 41, 4, "same", groups=256), data_init=False
)(lrelu4)
lrelu5 = layers.LeakyReLU()(conv5)
conv6 = addon_layers.WeightNormalization(
layers.Conv1D(1024, 5, 1, "same"), data_init=False
)(lrelu5)
lrelu6 = layers.LeakyReLU()(conv6)
conv7 = addon_layers.WeightNormalization(
layers.Conv1D(1, 3, 1, "same"), data_init=False
)(lrelu6)
return [lrelu1, lrelu2, lrelu3, lrelu4, lrelu5, lrelu6, conv7]
Create the generator
def create_generator(input_shape):
inp = keras.Input(input_shape)
x = MelSpec()(inp)
x = layers.Conv1D(512, 7, padding="same")(x)
x = layers.LeakyReLU()(x)
x = conv_block(x, 256, 8)
x = conv_block(x, 128, 8)
x = conv_block(x, 64, 2)
x = conv_block(x, 32, 2)
x = addon_layers.WeightNormalization(
layers.Conv1D(1, 7, padding="same", activation="tanh")
)(x)
return keras.Model(inp, x)
# We use a dynamic input shape for the generator since the model is fully convolutional
generator = create_generator((None, 1))
generator.summary()
결과
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, None, 1)] 0
__________________________________________________________________________________________________
mel_spec (MelSpec) (None, None, 80) 0 input_1[0][0]
__________________________________________________________________________________________________
conv1d (Conv1D) (None, None, 512) 287232 mel_spec[0][0]
__________________________________________________________________________________________________
leaky_re_lu (LeakyReLU) (None, None, 512) 0 conv1d[0][0]
__________________________________________________________________________________________________
weight_normalization (WeightNor (None, None, 256) 2097921 leaky_re_lu[0][0]
__________________________________________________________________________________________________
leaky_re_lu_1 (LeakyReLU) (None, None, 256) 0 weight_normalization[0][0]
__________________________________________________________________________________________________
weight_normalization_1 (WeightN (None, None, 256) 197121 leaky_re_lu_1[0][0]
__________________________________________________________________________________________________
leaky_re_lu_2 (LeakyReLU) (None, None, 256) 0 weight_normalization_1[0][0]
__________________________________________________________________________________________________
weight_normalization_2 (WeightN (None, None, 256) 197121 leaky_re_lu_2[0][0]
__________________________________________________________________________________________________
add (Add) (None, None, 256) 0 weight_normalization_2[0][0]
leaky_re_lu_1[0][0]
__________________________________________________________________________________________________
leaky_re_lu_3 (LeakyReLU) (None, None, 256) 0 add[0][0]
__________________________________________________________________________________________________
weight_normalization_3 (WeightN (None, None, 256) 197121 leaky_re_lu_3[0][0]
__________________________________________________________________________________________________
leaky_re_lu_4 (LeakyReLU) (None, None, 256) 0 weight_normalization_3[0][0]
__________________________________________________________________________________________________
weight_normalization_4 (WeightN (None, None, 256) 197121 leaky_re_lu_4[0][0]
__________________________________________________________________________________________________
add_1 (Add) (None, None, 256) 0 add[0][0]
weight_normalization_4[0][0]
__________________________________________________________________________________________________
leaky_re_lu_5 (LeakyReLU) (None, None, 256) 0 add_1[0][0]
__________________________________________________________________________________________________
weight_normalization_5 (WeightN (None, None, 256) 197121 leaky_re_lu_5[0][0]
__________________________________________________________________________________________________
leaky_re_lu_6 (LeakyReLU) (None, None, 256) 0 weight_normalization_5[0][0]
__________________________________________________________________________________________________
weight_normalization_6 (WeightN (None, None, 256) 197121 leaky_re_lu_6[0][0]
__________________________________________________________________________________________________
add_2 (Add) (None, None, 256) 0 weight_normalization_6[0][0]
add_1[0][0]
__________________________________________________________________________________________________
leaky_re_lu_7 (LeakyReLU) (None, None, 256) 0 add_2[0][0]
__________________________________________________________________________________________________
weight_normalization_7 (WeightN (None, None, 128) 524673 leaky_re_lu_7[0][0]
__________________________________________________________________________________________________
leaky_re_lu_8 (LeakyReLU) (None, None, 128) 0 weight_normalization_7[0][0]
__________________________________________________________________________________________________
weight_normalization_8 (WeightN (None, None, 128) 49409 leaky_re_lu_8[0][0]
__________________________________________________________________________________________________
leaky_re_lu_9 (LeakyReLU) (None, None, 128) 0 weight_normalization_8[0][0]
__________________________________________________________________________________________________
weight_normalization_9 (WeightN (None, None, 128) 49409 leaky_re_lu_9[0][0]
__________________________________________________________________________________________________
add_3 (Add) (None, None, 128) 0 weight_normalization_9[0][0]
leaky_re_lu_8[0][0]
__________________________________________________________________________________________________
leaky_re_lu_10 (LeakyReLU) (None, None, 128) 0 add_3[0][0]
__________________________________________________________________________________________________
weight_normalization_10 (Weight (None, None, 128) 49409 leaky_re_lu_10[0][0]
__________________________________________________________________________________________________
leaky_re_lu_11 (LeakyReLU) (None, None, 128) 0 weight_normalization_10[0][0]
__________________________________________________________________________________________________
weight_normalization_11 (Weight (None, None, 128) 49409 leaky_re_lu_11[0][0]
__________________________________________________________________________________________________
add_4 (Add) (None, None, 128) 0 add_3[0][0]
weight_normalization_11[0][0]
__________________________________________________________________________________________________
leaky_re_lu_12 (LeakyReLU) (None, None, 128) 0 add_4[0][0]
__________________________________________________________________________________________________
weight_normalization_12 (Weight (None, None, 128) 49409 leaky_re_lu_12[0][0]
__________________________________________________________________________________________________
leaky_re_lu_13 (LeakyReLU) (None, None, 128) 0 weight_normalization_12[0][0]
__________________________________________________________________________________________________
weight_normalization_13 (Weight (None, None, 128) 49409 leaky_re_lu_13[0][0]
__________________________________________________________________________________________________
add_5 (Add) (None, None, 128) 0 weight_normalization_13[0][0]
add_4[0][0]
__________________________________________________________________________________________________
leaky_re_lu_14 (LeakyReLU) (None, None, 128) 0 add_5[0][0]
__________________________________________________________________________________________________
weight_normalization_14 (Weight (None, None, 64) 131265 leaky_re_lu_14[0][0]
__________________________________________________________________________________________________
leaky_re_lu_15 (LeakyReLU) (None, None, 64) 0 weight_normalization_14[0][0]
__________________________________________________________________________________________________
weight_normalization_15 (Weight (None, None, 64) 12417 leaky_re_lu_15[0][0]
__________________________________________________________________________________________________
leaky_re_lu_16 (LeakyReLU) (None, None, 64) 0 weight_normalization_15[0][0]
__________________________________________________________________________________________________
weight_normalization_16 (Weight (None, None, 64) 12417 leaky_re_lu_16[0][0]
__________________________________________________________________________________________________
add_6 (Add) (None, None, 64) 0 weight_normalization_16[0][0]
leaky_re_lu_15[0][0]
__________________________________________________________________________________________________
leaky_re_lu_17 (LeakyReLU) (None, None, 64) 0 add_6[0][0]
__________________________________________________________________________________________________
weight_normalization_17 (Weight (None, None, 64) 12417 leaky_re_lu_17[0][0]
__________________________________________________________________________________________________
leaky_re_lu_18 (LeakyReLU) (None, None, 64) 0 weight_normalization_17[0][0]
__________________________________________________________________________________________________
weight_normalization_18 (Weight (None, None, 64) 12417 leaky_re_lu_18[0][0]
__________________________________________________________________________________________________
add_7 (Add) (None, None, 64) 0 add_6[0][0]
weight_normalization_18[0][0]
__________________________________________________________________________________________________
leaky_re_lu_19 (LeakyReLU) (None, None, 64) 0 add_7[0][0]
__________________________________________________________________________________________________
weight_normalization_19 (Weight (None, None, 64) 12417 leaky_re_lu_19[0][0]
__________________________________________________________________________________________________
leaky_re_lu_20 (LeakyReLU) (None, None, 64) 0 weight_normalization_19[0][0]
__________________________________________________________________________________________________
weight_normalization_20 (Weight (None, None, 64) 12417 leaky_re_lu_20[0][0]
__________________________________________________________________________________________________
add_8 (Add) (None, None, 64) 0 weight_normalization_20[0][0]
add_7[0][0]
__________________________________________________________________________________________________
leaky_re_lu_21 (LeakyReLU) (None, None, 64) 0 add_8[0][0]
__________________________________________________________________________________________________
weight_normalization_21 (Weight (None, None, 32) 32865 leaky_re_lu_21[0][0]
__________________________________________________________________________________________________
leaky_re_lu_22 (LeakyReLU) (None, None, 32) 0 weight_normalization_21[0][0]
__________________________________________________________________________________________________
weight_normalization_22 (Weight (None, None, 32) 3137 leaky_re_lu_22[0][0]
__________________________________________________________________________________________________
leaky_re_lu_23 (LeakyReLU) (None, None, 32) 0 weight_normalization_22[0][0]
__________________________________________________________________________________________________
weight_normalization_23 (Weight (None, None, 32) 3137 leaky_re_lu_23[0][0]
__________________________________________________________________________________________________
add_9 (Add) (None, None, 32) 0 weight_normalization_23[0][0]
leaky_re_lu_22[0][0]
__________________________________________________________________________________________________
leaky_re_lu_24 (LeakyReLU) (None, None, 32) 0 add_9[0][0]
__________________________________________________________________________________________________
weight_normalization_24 (Weight (None, None, 32) 3137 leaky_re_lu_24[0][0]
__________________________________________________________________________________________________
leaky_re_lu_25 (LeakyReLU) (None, None, 32) 0 weight_normalization_24[0][0]
__________________________________________________________________________________________________
weight_normalization_25 (Weight (None, None, 32) 3137 leaky_re_lu_25[0][0]
__________________________________________________________________________________________________
add_10 (Add) (None, None, 32) 0 add_9[0][0]
weight_normalization_25[0][0]
__________________________________________________________________________________________________
leaky_re_lu_26 (LeakyReLU) (None, None, 32) 0 add_10[0][0]
__________________________________________________________________________________________________
weight_normalization_26 (Weight (None, None, 32) 3137 leaky_re_lu_26[0][0]
__________________________________________________________________________________________________
leaky_re_lu_27 (LeakyReLU) (None, None, 32) 0 weight_normalization_26[0][0]
__________________________________________________________________________________________________
weight_normalization_27 (Weight (None, None, 32) 3137 leaky_re_lu_27[0][0]
__________________________________________________________________________________________________
add_11 (Add) (None, None, 32) 0 weight_normalization_27[0][0]
add_10[0][0]
__________________________________________________________________________________________________
leaky_re_lu_28 (LeakyReLU) (None, None, 32) 0 add_11[0][0]
__________________________________________________________________________________________________
weight_normalization_28 (Weight (None, None, 1) 452 leaky_re_lu_28[0][0]
==================================================================================================
Total params: 4,646,912
Trainable params: 4,646,658
Non-trainable params: 254
__________________________________________________________________________________________________
Create the discriminator
def create_discriminator(input_shape):
inp = keras.Input(input_shape)
out_map1 = discriminator_block(inp)
pool1 = layers.AveragePooling1D()(inp)
out_map2 = discriminator_block(pool1)
pool2 = layers.AveragePooling1D()(pool1)
out_map3 = discriminator_block(pool2)
return keras.Model(inp, [out_map1, out_map2, out_map3])
# We use a dynamic input shape for the discriminator
# This is done because the input shape for the generator is unknown
discriminator = create_discriminator((None, 1))
discriminator.summary()
결과
Model: "model_1"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_2 (InputLayer) [(None, None, 1)] 0
__________________________________________________________________________________________________
average_pooling1d (AveragePooli (None, None, 1) 0 input_2[0][0]
__________________________________________________________________________________________________
average_pooling1d_1 (AveragePoo (None, None, 1) 0 average_pooling1d[0][0]
__________________________________________________________________________________________________
weight_normalization_29 (Weight (None, None, 16) 273 input_2[0][0]
__________________________________________________________________________________________________
weight_normalization_36 (Weight (None, None, 16) 273 average_pooling1d[0][0]
__________________________________________________________________________________________________
weight_normalization_43 (Weight (None, None, 16) 273 average_pooling1d_1[0][0]
__________________________________________________________________________________________________
leaky_re_lu_29 (LeakyReLU) (None, None, 16) 0 weight_normalization_29[0][0]
__________________________________________________________________________________________________
leaky_re_lu_35 (LeakyReLU) (None, None, 16) 0 weight_normalization_36[0][0]
__________________________________________________________________________________________________
leaky_re_lu_41 (LeakyReLU) (None, None, 16) 0 weight_normalization_43[0][0]
__________________________________________________________________________________________________
weight_normalization_30 (Weight (None, None, 64) 10625 leaky_re_lu_29[0][0]
__________________________________________________________________________________________________
weight_normalization_37 (Weight (None, None, 64) 10625 leaky_re_lu_35[0][0]
__________________________________________________________________________________________________
weight_normalization_44 (Weight (None, None, 64) 10625 leaky_re_lu_41[0][0]
__________________________________________________________________________________________________
leaky_re_lu_30 (LeakyReLU) (None, None, 64) 0 weight_normalization_30[0][0]
__________________________________________________________________________________________________
leaky_re_lu_36 (LeakyReLU) (None, None, 64) 0 weight_normalization_37[0][0]
__________________________________________________________________________________________________
leaky_re_lu_42 (LeakyReLU) (None, None, 64) 0 weight_normalization_44[0][0]
__________________________________________________________________________________________________
weight_normalization_31 (Weight (None, None, 256) 42497 leaky_re_lu_30[0][0]
__________________________________________________________________________________________________
weight_normalization_38 (Weight (None, None, 256) 42497 leaky_re_lu_36[0][0]
__________________________________________________________________________________________________
weight_normalization_45 (Weight (None, None, 256) 42497 leaky_re_lu_42[0][0]
__________________________________________________________________________________________________
leaky_re_lu_31 (LeakyReLU) (None, None, 256) 0 weight_normalization_31[0][0]
__________________________________________________________________________________________________
leaky_re_lu_37 (LeakyReLU) (None, None, 256) 0 weight_normalization_38[0][0]
__________________________________________________________________________________________________
leaky_re_lu_43 (LeakyReLU) (None, None, 256) 0 weight_normalization_45[0][0]
__________________________________________________________________________________________________
weight_normalization_32 (Weight (None, None, 1024) 169985 leaky_re_lu_31[0][0]
__________________________________________________________________________________________________
weight_normalization_39 (Weight (None, None, 1024) 169985 leaky_re_lu_37[0][0]
__________________________________________________________________________________________________
weight_normalization_46 (Weight (None, None, 1024) 169985 leaky_re_lu_43[0][0]
__________________________________________________________________________________________________
leaky_re_lu_32 (LeakyReLU) (None, None, 1024) 0 weight_normalization_32[0][0]
__________________________________________________________________________________________________
leaky_re_lu_38 (LeakyReLU) (None, None, 1024) 0 weight_normalization_39[0][0]
__________________________________________________________________________________________________
leaky_re_lu_44 (LeakyReLU) (None, None, 1024) 0 weight_normalization_46[0][0]
__________________________________________________________________________________________________
weight_normalization_33 (Weight (None, None, 1024) 169985 leaky_re_lu_32[0][0]
__________________________________________________________________________________________________
weight_normalization_40 (Weight (None, None, 1024) 169985 leaky_re_lu_38[0][0]
__________________________________________________________________________________________________
weight_normalization_47 (Weight (None, None, 1024) 169985 leaky_re_lu_44[0][0]
__________________________________________________________________________________________________
leaky_re_lu_33 (LeakyReLU) (None, None, 1024) 0 weight_normalization_33[0][0]
__________________________________________________________________________________________________
leaky_re_lu_39 (LeakyReLU) (None, None, 1024) 0 weight_normalization_40[0][0]
__________________________________________________________________________________________________
leaky_re_lu_45 (LeakyReLU) (None, None, 1024) 0 weight_normalization_47[0][0]
__________________________________________________________________________________________________
weight_normalization_34 (Weight (None, None, 1024) 5244929 leaky_re_lu_33[0][0]
__________________________________________________________________________________________________
weight_normalization_41 (Weight (None, None, 1024) 5244929 leaky_re_lu_39[0][0]
__________________________________________________________________________________________________
weight_normalization_48 (Weight (None, None, 1024) 5244929 leaky_re_lu_45[0][0]
__________________________________________________________________________________________________
leaky_re_lu_34 (LeakyReLU) (None, None, 1024) 0 weight_normalization_34[0][0]
__________________________________________________________________________________________________
leaky_re_lu_40 (LeakyReLU) (None, None, 1024) 0 weight_normalization_41[0][0]
__________________________________________________________________________________________________
leaky_re_lu_46 (LeakyReLU) (None, None, 1024) 0 weight_normalization_48[0][0]
__________________________________________________________________________________________________
weight_normalization_35 (Weight (None, None, 1) 3075 leaky_re_lu_34[0][0]
__________________________________________________________________________________________________
weight_normalization_42 (Weight (None, None, 1) 3075 leaky_re_lu_40[0][0]
__________________________________________________________________________________________________
weight_normalization_49 (Weight (None, None, 1) 3075 leaky_re_lu_46[0][0]
==================================================================================================
Total params: 16,924,107
Trainable params: 16,924,086
Non-trainable params: 21
__________________________________________________________________________________________________
Defining the loss functions
Generator Loss
The generator architecture uses a combination of two losses
Mean Squared Error:
- This is the standard MSE generator loss calculated between ones and the outputs from the discriminator with N layers.
$$ Loss = \frac{1}{3} \sum_{k=0}^3 \parallel {1-D_k^{(N)}(G(s))} \parallel_2 $$
Feature Matching Loss:
- This loss involves extracting the outputs of every layer from the discriminator for both the generator and ground truth and compare each layer output k using Mean Absolute Error.
$$ Loss_{f_m} = \frac{1}{N \times 3} \sum_{i=0}^N \parallel {D_k^{(i)}(x)-D_k^{(i)}(G(s))} \parallel_1 $$
Discriminator Loss
The discriminator uses the Mean Absolute Error and compares the real data predictions with ones and generated predictions with zeros.
$$ Loss = \frac{1}{3} \sum_{k=0}^3 (\parallel {1-D_k^{(N)}(x)} \parallel_2 + \parallel {0-D_k^{(N)}(G(s))} \parallel_1) $$
# Generator loss
def generator_loss(real_pred, fake_pred):
"""Loss function for the generator.
Args:
real_pred: Tensor, output of the ground truth wave passed through the discriminator.
fake_pred: Tensor, output of the generator prediction passed through the discriminator.
Returns:
Loss for the generator.
"""
gen_loss = []
for i in range(len(fake_pred)):
gen_loss.append(mse(tf.ones_like(fake_pred[i][-1]), fake_pred[i][-1]))
return tf.reduce_mean(gen_loss)
def feature_matching_loss(real_pred, fake_pred):
"""Implements the feature matching loss.
Args:
real_pred: Tensor, output of the ground truth wave passed through the discriminator.
fake_pred: Tensor, output of the generator prediction passed through the discriminator.
Returns:
Feature Matching Loss.
"""
fm_loss = []
for i in range(len(fake_pred)):
for j in range(len(fake_pred[i]) - 1):
fm_loss.append(mae(real_pred[i][j], fake_pred[i][j]))
return tf.reduce_mean(fm_loss)
def discriminator_loss(real_pred, fake_pred):
"""Implements the discriminator loss.
Args:
real_pred: Tensor, output of the ground truth wave passed through the discriminator.
fake_pred: Tensor, output of the generator prediction passed through the discriminator.
Returns:
Discriminator Loss.
"""
real_loss, fake_loss = [], []
for i in range(len(real_pred)):
real_loss.append(mse(tf.ones_like(real_pred[i][-1]), real_pred[i][-1]))
fake_loss.append(mse(tf.zeros_like(fake_pred[i][-1]), fake_pred[i][-1]))
# Calculating the final discriminator loss after scaling
disc_loss = tf.reduce_mean(real_loss) + tf.reduce_mean(fake_loss)
return disc_loss
Defining the MelGAN model for training. This subclass overrides the train_step()
method to implement the training logic.
class MelGAN(keras.Model):
def __init__(self, generator, discriminator, **kwargs):
"""MelGAN trainer class
Args:
generator: keras.Model, Generator model
discriminator: keras.Model, Discriminator model
"""
super().__init__(**kwargs)
self.generator = generator
self.discriminator = discriminator
def compile(
self,
gen_optimizer,
disc_optimizer,
generator_loss,
feature_matching_loss,
discriminator_loss,
):
"""MelGAN compile method.
Args:
gen_optimizer: keras.optimizer, optimizer to be used for training
disc_optimizer: keras.optimizer, optimizer to be used for training
generator_loss: callable, loss function for generator
feature_matching_loss: callable, loss function for feature matching
discriminator_loss: callable, loss function for discriminator
"""
super().compile()
# Optimizers
self.gen_optimizer = gen_optimizer
self.disc_optimizer = disc_optimizer
# Losses
self.generator_loss = generator_loss
self.feature_matching_loss = feature_matching_loss
self.discriminator_loss = discriminator_loss
# Trackers
self.gen_loss_tracker = keras.metrics.Mean(name="gen_loss")
self.disc_loss_tracker = keras.metrics.Mean(name="disc_loss")
def train_step(self, batch):
x_batch_train, y_batch_train = batch
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
# Generating the audio wave
gen_audio_wave = generator(x_batch_train, training=True)
# Generating the features using the discriminator
real_pred = discriminator(y_batch_train)
fake_pred = discriminator(gen_audio_wave)
# Calculating the generator losses
gen_loss = generator_loss(real_pred, fake_pred)
fm_loss = feature_matching_loss(real_pred, fake_pred)
# Calculating final generator loss
gen_fm_loss = gen_loss + 10 * fm_loss
# Calculating the discriminator losses
disc_loss = discriminator_loss(real_pred, fake_pred)
# Calculating and applying the gradients for generator and discriminator
grads_gen = gen_tape.gradient(gen_fm_loss, generator.trainable_weights)
grads_disc = disc_tape.gradient(disc_loss, discriminator.trainable_weights)
gen_optimizer.apply_gradients(zip(grads_gen, generator.trainable_weights))
disc_optimizer.apply_gradients(zip(grads_disc, discriminator.trainable_weights))
self.gen_loss_tracker.update_state(gen_fm_loss)
self.disc_loss_tracker.update_state(disc_loss)
return {
"gen_loss": self.gen_loss_tracker.result(),
"disc_loss": self.disc_loss_tracker.result(),
}
Training
The paper suggests that the training with dynamic shapes takes around 400,000 steps (~500 epochs). For this example, we will run it only for a single epoch (819 steps). Longer training time (greater than 300 epochs) will almost certainly provide better results.
gen_optimizer = keras.optimizers.Adam(
LEARNING_RATE_GEN, beta_1=0.5, beta_2=0.9, clipnorm=1
)
disc_optimizer = keras.optimizers.Adam(
LEARNING_RATE_DISC, beta_1=0.5, beta_2=0.9, clipnorm=1
)
# Start training
generator = create_generator((None, 1))
discriminator = create_discriminator((None, 1))
mel_gan = MelGAN(generator, discriminator)
mel_gan.compile(
gen_optimizer,
disc_optimizer,
generator_loss,
feature_matching_loss,
discriminator_loss,
)
mel_gan.fit(
train_dataset.shuffle(200).batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE), epochs=1
)
결과
819/819 [==============================] - 641s 696ms/step - gen_loss: 0.9761 - disc_loss: 0.9350
<keras.callbacks.History at 0x7f8f702fe050>
Testing the model
The trained model can now be used for real time text-to-speech translation tasks. To test how fast the MelGAN inference can be, let us take a sample audio mel-spectrogram and convert it. Note that the actual model pipeline will not include the MelSpec
layer and hence this layer will be disabled during inference. The inference input will be a mel-spectrogram processed similar to the MelSpec
layer configuration.
For testing this, we will create a randomly uniformly distributed tensor to simulate the behavior of the inference pipeline.
# Sampling a random tensor to mimic a batch of 128 spectrograms of shape [50, 80]
audio_sample = tf.random.uniform([128, 50, 80])
Timing the inference speed of a single sample. Running this, you can see that the average inference time per spectrogram ranges from 8 milliseconds to 10 milliseconds on a K80 GPU which is pretty fast.
pred = generator.predict(audio_sample, batch_size=32, verbose=1)
결과
4/4 [==============================] - 5s 280ms/step
Conclusion
The MelGAN is a highly effective architecture for spectral inversion that has a Mean Opinion Score (MOS) of 3.61 that considerably outperforms the Griffin Lim algorithm having a MOS of just 1.57. In contrast with this, the MelGAN compares with the state-of-the-art WaveGlow and WaveNet architectures on text-to-speech and speech enhancement tasks on the LJSpeech and VCTK datasets [1].
This tutorial highlights:
- The advantages of using dilated convolutions that grow with the filter size
- Implementation of a custom layer for on-the-fly conversion of audio waves to mel-spectrograms
- Effectiveness of using the feature matching loss function for training GAN generators.
Further reading
- MelGAN paper (Kundan Kumar et al.) to understand the reasoning behind the architecture and training process
- For in-depth understanding of the feature matching loss, you can refer to Improved Techniques for Training GANs (Tim Salimans et al.).
Example available on HuggingFace
Trained Model | Demo |
---|---|