Image ops
- 원본 링크 : https://keras.io/api/ops/image/
- 최종 확인 : 2024-11-25
affine_transform
function
keras.ops.image.affine_transform(
images,
transform,
interpolation="bilinear",
fill_mode="constant",
fill_value=0,
data_format=None,
)
Applies the given transform(s) to the image(s).
Arguments
- images: Input image or batch of images. Must be 3D or 4D.
- transform: Projective transform matrix/matrices. A vector of length 8 or
tensor of size N x 8. If one row of transform is
[a0, a1, a2, b0, b1, b2, c0, c1]
, then it maps the output point(x, y)
to a transformed input point(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)
, wherek = c0 x + c1 y + 1
. The transform is inverted compared to the transform mapping input points to output points. Note that gradients are not backpropagated into transformation parameters. Note thatc0
andc1
are only effective when using TensorFlow backend and will be considered as0
when using other backends. - interpolation: Interpolation method. Available methods are
"nearest"
, and"bilinear"
. Defaults to"bilinear"
. - fill_mode: Points outside the boundaries of the input are filled
according to the given mode. Available methods are
"constant"
,"nearest"
,"wrap"
and"reflect"
. Defaults to"constant"
."reflect"
:(d c b a | a b c d | d c b a)
The input is extended by reflecting about the edge of the last pixel."constant"
:(k k k k | a b c d | k k k k)
The input is extended by filling all values beyond the edge with the same constant value k specified byfill_value
."wrap"
:(a b c d | a b c d | a b c d)
The input is extended by wrapping around to the opposite edge."nearest"
:(a a a a | a b c d | d d d d)
The input is extended by the nearest pixel.
- fill_value: Value used for points outside the boundaries of the input if
fill_mode="constant"
. Defaults to0
. - data_format: A string specifying the data format of the input tensor.
It can be either
"channels_last"
or"channels_first"
."channels_last"
corresponds to inputs with shape(batch, height, width, channels)
, while"channels_first"
corresponds to inputs with shape(batch, channels, height, width)
. If not specified, the value will default tokeras.config.image_data_format
.
Returns
Applied affine transform image or batch of images.
Examples
>>> x = np.random.random((2, 64, 80, 3)) # batch of 2 RGB images
>>> transform = np.array(
... [
... [1.5, 0, -20, 0, 1.5, -16, 0, 0], # zoom
... [1, 0, -20, 0, 1, -16, 0, 0], # translation
... ]
... )
>>> y = keras.ops.image.affine_transform(x, transform)
>>> y.shape
(2, 64, 80, 3)
>>> x = np.random.random((64, 80, 3)) # single RGB image
>>> transform = np.array([1.0, 0.5, -20, 0.5, 1.0, -16, 0, 0]) # shear
>>> y = keras.ops.image.affine_transform(x, transform)
>>> y.shape
(64, 80, 3)
>>> x = np.random.random((2, 3, 64, 80)) # batch of 2 RGB images
>>> transform = np.array(
... [
... [1.5, 0, -20, 0, 1.5, -16, 0, 0], # zoom
... [1, 0, -20, 0, 1, -16, 0, 0], # translation
... ]
... )
>>> y = keras.ops.image.affine_transform(x, transform,
... data_format="channels_first")
>>> y.shape
(2, 3, 64, 80)
crop_images
function
keras.ops.image.crop_images(
images,
top_cropping=None,
left_cropping=None,
bottom_cropping=None,
right_cropping=None,
target_height=None,
target_width=None,
data_format=None,
)
Crop images
to a specified height
and width
.
Arguments
- images: Input image or batch of images. Must be 3D or 4D.
- top_cropping: Number of columns to crop from the top.
- left_cropping: Number of columns to crop from the left.
- bottom_cropping: Number of columns to crop from the bottom.
- right_cropping: Number of columns to crop from the right.
- target_height: Height of the output images.
- target_width: Width of the output images.
- data_format: A string specifying the data format of the input tensor.
It can be either
"channels_last"
or"channels_first"
."channels_last"
corresponds to inputs with shape(batch, height, width, channels)
, while"channels_first"
corresponds to inputs with shape(batch, channels, height, width)
. If not specified, the value will default tokeras.config.image_data_format
.
Returns
Cropped image or batch of images.
Example
>>> images = np.reshape(np.arange(1, 28, dtype="float32"), [3, 3, 3])
>>> images[:,:,0] # print the first channel of the images
array([[ 1., 4., 7.],
[10., 13., 16.],
[19., 22., 25.]], dtype=float32)
>>> cropped_images = keras.image.crop_images(images, 0, 0, 2, 2)
>>> cropped_images[:,:,0] # print the first channel of the cropped images
array([[ 1., 4.],
[10., 13.]], dtype=float32)
extract_patches
function
keras.ops.image.extract_patches(
images, size, strides=None, dilation_rate=1, padding="valid", data_format=None
)
Extracts patches from the image(s).
Arguments
- images: Input image or batch of images. Must be 3D or 4D.
- size: Patch size int or tuple (patch_height, patch_width)
- strides: strides along height and width. If not specified, or
if
None
, it defaults to the same value assize
. - dilation_rate: This is the input stride, specifying how far two
consecutive patch samples are in the input. For value other than 1,
strides must be 1. NOTE:
strides > 1
is not supported in conjunction withdilation_rate > 1
- padding: The type of padding algorithm to use:
"same"
or"valid"
. - data_format: A string specifying the data format of the input tensor.
It can be either
"channels_last"
or"channels_first"
."channels_last"
corresponds to inputs with shape(batch, height, width, channels)
, while"channels_first"
corresponds to inputs with shape(batch, channels, height, width)
. If not specified, the value will default tokeras.config.image_data_format
.
Returns
Extracted patches 3D (if not batched) or 4D (if batched)
Examples
>>> image = np.random.random(
... (2, 20, 20, 3)
... ).astype("float32") # batch of 2 RGB images
>>> patches = keras.ops.image.extract_patches(image, (5, 5))
>>> patches.shape
(2, 4, 4, 75)
>>> image = np.random.random((20, 20, 3)).astype("float32") # 1 RGB image
>>> patches = keras.ops.image.extract_patches(image, (3, 3), (1, 1))
>>> patches.shape
(18, 18, 27)
hsv_to_rgb
function
keras.ops.image.hsv_to_rgb(images, data_format=None)
Convert HSV images to RGB.
images
must be of float dtype, and the output is only well defined if the
values in images
are in [0, 1]
.
Arguments
- images: Input image or batch of images. Must be 3D or 4D.
- data_format: A string specifying the data format of the input tensor.
It can be either
"channels_last"
or"channels_first"
."channels_last"
corresponds to inputs with shape(batch, height, width, channels)
, while"channels_first"
corresponds to inputs with shape(batch, channels, height, width)
. If not specified, the value will default tokeras.config.image_data_format
.
Returns
RGB image or batch of RGB images.
Examples
>>> import numpy as np
>>> from keras import ops
>>> x = np.random.random((2, 4, 4, 3))
>>> y = ops.image.hsv_to_rgb(x)
>>> y.shape
(2, 4, 4, 3)
>>> x = np.random.random((4, 4, 3)) # Single HSV image
>>> y = ops.image.hsv_to_rgb(x)
>>> y.shape
(4, 4, 3)
>>> x = np.random.random((2, 3, 4, 4))
>>> y = ops.image.hsv_to_rgb(x, data_format="channels_first")
>>> y.shape
(2, 3, 4, 4)
map_coordinates
function
keras.ops.image.map_coordinates(
inputs, coordinates, order, fill_mode="constant", fill_value=0
)
Map the input array to new coordinates by interpolation.
Note that interpolation near boundaries differs from the scipy function, because we fixed an outstanding bug scipy/issues/2640.
Arguments
- inputs: The input array.
- coordinates: The coordinates at which inputs is evaluated.
- order: The order of the spline interpolation. The order must be
0
or1
.0
indicates the nearest neighbor and1
indicates the linear interpolation. - fill_mode: Points outside the boundaries of the inputs are filled
according to the given mode. Available methods are
"constant"
,"nearest"
,"wrap"
and"mirror"
and"reflect"
. Defaults to"constant"
."constant"
:(k k k k | a b c d | k k k k)
The inputs is extended by filling all values beyond the edge with the same constant value k specified byfill_value
."nearest"
:(a a a a | a b c d | d d d d)
The inputs is extended by the nearest pixel."wrap"
:(a b c d | a b c d | a b c d)
The inputs is extended by wrapping around to the opposite edge."mirror"
:(c d c b | a b c d | c b a b)
The inputs is extended by mirroring about the edge."reflect"
:(d c b a | a b c d | d c b a)
The inputs is extended by reflecting about the edge of the last pixel.
- fill_value: Value used for points outside the boundaries of the inputs
if
fill_mode="constant"
. Defaults to0
.
Returns
Output input or batch of inputs.
pad_images
function
keras.ops.image.pad_images(
images,
top_padding=None,
left_padding=None,
bottom_padding=None,
right_padding=None,
target_height=None,
target_width=None,
data_format=None,
)
Pad images
with zeros to the specified height
and width
.
Arguments
- images: Input image or batch of images. Must be 3D or 4D.
- top_padding: Number of rows of zeros to add on top.
- left_padding: Number of columns of zeros to add on the left.
- bottom_padding: Number of rows of zeros to add at the bottom.
- right_padding: Number of columns of zeros to add on the right.
- target_height: Height of output images.
- target_width: Width of output images.
- data_format: A string specifying the data format of the input tensor.
It can be either
"channels_last"
or"channels_first"
."channels_last"
corresponds to inputs with shape(batch, height, width, channels)
, while"channels_first"
corresponds to inputs with shape(batch, channels, height, width)
. If not specified, the value will default tokeras.config.image_data_format
.
Returns
Padded image or batch of images.
Example
>>> images = np.random.random((15, 25, 3))
>>> padded_images = keras.ops.image.pad_images(
... images, 2, 3, target_height=20, target_width=30
... )
>>> padded_images.shape
(20, 30, 3)
>>> batch_images = np.random.random((2, 15, 25, 3))
>>> padded_batch = keras.ops.image.pad_images(
... batch_images, 2, 3, target_height=20, target_width=30
... )
>>> padded_batch.shape
(2, 20, 30, 3)
resize
function
keras.ops.image.resize(
images,
size,
interpolation="bilinear",
antialias=False,
crop_to_aspect_ratio=False,
pad_to_aspect_ratio=False,
fill_mode="constant",
fill_value=0.0,
data_format=None,
)
Resize images to size using the specified interpolation method.
Arguments
- images: Input image or batch of images. Must be 3D or 4D.
- size: Size of output image in
(height, width)
format. - interpolation: Interpolation method. Available methods are
"nearest"
,"bilinear"
, and"bicubic"
. Defaults to"bilinear"
. - antialias: Whether to use an antialiasing filter when downsampling an
image. Defaults to
False
. - crop_to_aspect_ratio: If
True
, resize the images without aspect ratio distortion. When the original aspect ratio differs from the target aspect ratio, the output image will be cropped so as to return the largest possible window in the image (of size(height, width)
) that matches the target aspect ratio. By default (crop_to_aspect_ratio=False
), aspect ratio may not be preserved. - pad_to_aspect_ratio: If
True
, pad the images without aspect ratio distortion. When the original aspect ratio differs from the target aspect ratio, the output image will be evenly padded on the short side. - fill_mode: When using
pad_to_aspect_ratio=True
, padded areas are filled according to the given mode. Only"constant"
is supported at this time (fill with constant value, equal tofill_value
). - fill_value: Float. Padding value to use when
pad_to_aspect_ratio=True
. - data_format: A string specifying the data format of the input tensor.
It can be either
"channels_last"
or"channels_first"
."channels_last"
corresponds to inputs with shape(batch, height, width, channels)
, while"channels_first"
corresponds to inputs with shape(batch, channels, height, width)
. If not specified, the value will default tokeras.config.image_data_format
.
Returns
Resized image or batch of images.
Examples
>>> x = np.random.random((2, 4, 4, 3)) # batch of 2 RGB images
>>> y = keras.ops.image.resize(x, (2, 2))
>>> y.shape
(2, 2, 2, 3)
>>> x = np.random.random((4, 4, 3)) # single RGB image
>>> y = keras.ops.image.resize(x, (2, 2))
>>> y.shape
(2, 2, 3)
>>> x = np.random.random((2, 3, 4, 4)) # batch of 2 RGB images
>>> y = keras.ops.image.resize(x, (2, 2),
... data_format="channels_first")
>>> y.shape
(2, 3, 2, 2)
rgb_to_hsv
function
keras.ops.image.rgb_to_hsv(images, data_format=None)
Convert RGB images to HSV.
images
must be of float dtype, and the output is only well defined if the
values in images
are in [0, 1]
.
All HSV values are in [0, 1]
. A hue of 0
corresponds to pure red, 1/3
is pure green, and 2/3
is pure blue.
Arguments
- images: Input image or batch of images. Must be 3D or 4D.
- data_format: A string specifying the data format of the input tensor.
It can be either
"channels_last"
or"channels_first"
."channels_last"
corresponds to inputs with shape(batch, height, width, channels)
, while"channels_first"
corresponds to inputs with shape(batch, channels, height, width)
. If not specified, the value will default tokeras.config.image_data_format
.
Returns
HSV image or batch of HSV images.
Examples
>>> import numpy as np
>>> from keras import ops
>>> x = np.random.random((2, 4, 4, 3))
>>> y = ops.image.rgb_to_hsv(x)
>>> y.shape
(2, 4, 4, 3)
>>> x = np.random.random((4, 4, 3)) # Single RGB image
>>> y = ops.image.rgb_to_hsv(x)
>>> y.shape
(4, 4, 3)
>>> x = np.random.random((2, 3, 4, 4))
>>> y = ops.image.rgb_to_hsv(x, data_format="channels_first")
>>> y.shape
(2, 3, 4, 4)
rgb_to_grayscale
function
keras.ops.image.rgb_to_grayscale(images, data_format=None)
Convert RGB images to grayscale.
This function converts RGB images to grayscale images. It supports both 3D and 4D tensors.
Arguments
- images: Input image or batch of images. Must be 3D or 4D.
- data_format: A string specifying the data format of the input tensor.
It can be either
"channels_last"
or"channels_first"
."channels_last"
corresponds to inputs with shape(batch, height, width, channels)
, while"channels_first"
corresponds to inputs with shape(batch, channels, height, width)
. If not specified, the value will default tokeras.config.image_data_format
.
Returns
Grayscale image or batch of grayscale images.
Examples
>>> import numpy as np
>>> from keras import ops
>>> x = np.random.random((2, 4, 4, 3))
>>> y = ops.image.rgb_to_grayscale(x)
>>> y.shape
(2, 4, 4, 1)
>>> x = np.random.random((4, 4, 3)) # Single RGB image
>>> y = ops.image.rgb_to_grayscale(x)
>>> y.shape
(4, 4, 1)
>>> x = np.random.random((2, 3, 4, 4))
>>> y = ops.image.rgb_to_grayscale(x, data_format="channels_first")
>>> y.shape
(2, 1, 4, 4)