Losses
- 원본 링크 : https://keras.io/api/losses/
- 최종 확인 : 2024-11-25
The purpose of loss functions is to compute the quantity that a model should seek to minimize during training.
Available losses
Note that all losses are available both via a class handle and via a function handle.
The class handles enable you to pass configuration arguments to the constructor
(e.g.
loss_fn = CategoricalCrossentropy(from_logits=True)
),
and they perform reduction by default when used in a standalone way (see details below).
Probabilistic losses
- BinaryCrossentropy class
- BinaryFocalCrossentropy class
- CategoricalCrossentropy class
- CategoricalFocalCrossentropy class
- SparseCategoricalCrossentropy class
- Poisson class
- CTC class
- KLDivergence class
- binary_crossentropy function
- categorical_crossentropy function
- sparse_categorical_crossentropy function
- poisson function
- ctc function
- kl_divergence function
Regression losses
- MeanSquaredError class
- MeanAbsoluteError class
- MeanAbsolutePercentageError class
- MeanSquaredLogarithmicError class
- CosineSimilarity class
- Huber class
- LogCosh class
- Tversky class
- Dice class
- mean_squared_error function
- mean_absolute_error function
- mean_absolute_percentage_error function
- mean_squared_logarithmic_error function
- cosine_similarity function
- huber function
- log_cosh function
- tversky function
- dice function
Hinge losses for “maximum-margin” classification
- Hinge class
- SquaredHinge class
- CategoricalHinge class
- hinge function
- squared_hinge function
- categorical_hinge function
Base Loss API
Loss
class
keras.losses.Loss(name=None, reduction="sum_over_batch_size", dtype=None)
Loss base class.
Arguments
- reduction: Type of reduction to apply to the loss. In almost all cases
this should be
"sum_over_batch_size"
. Supported options are"sum"
,"sum_over_batch_size"
orNone
. - name: Optional name for the loss instance.
- dtype: The dtype of the loss’s computations. Defaults to
None
, which means usingkeras.backend.floatx()
.keras.backend.floatx()
is a"float32"
unless set to different value (viakeras.backend.set_floatx()
). If akeras.DTypePolicy
is provided, then thecompute_dtype
will be utilized.
To be implemented by subclasses:
call()
: Contains the logic for loss calculation usingy_true
,y_pred
.
Example subclass implementation:
class MeanSquaredError(Loss):
def call(self, y_true, y_pred):
return ops.mean(ops.square(y_pred - y_true), axis=-1)
Usage of losses with compile()
& fit()
A loss function is one of the two arguments required for compiling a Keras model:
import keras
from keras import layers
model = keras.Sequential()
model.add(layers.Dense(64, kernel_initializer='uniform', input_shape=(10,)))
model.add(layers.Activation('softmax'))
loss_fn = keras.losses.SparseCategoricalCrossentropy()
model.compile(loss=loss_fn, optimizer='adam')
All built-in loss functions may also be passed via their string identifier:
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
Loss functions are typically created by instantiating a loss class (e.g. keras.losses.SparseCategoricalCrossentropy
).
All losses are also provided as function handles (e.g. keras.losses.sparse_categorical_crossentropy
).
Using classes enables you to pass configuration arguments at instantiation time, e.g.:
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
Standalone usage of losses
A loss is a callable with arguments loss_fn(y_true, y_pred, sample_weight=None)
:
- y_true: Ground truth values, of shape
(batch_size, d0, ... dN)
. For sparse loss functions, such as sparse categorical crossentropy, the shape should be(batch_size, d0, ... dN-1)
- y_pred: The predicted values, of shape
(batch_size, d0, .. dN)
. - sample_weight: Optional
sample_weight
acts as reduction weighting coefficient for the per-sample losses. If a scalar is provided, then the loss is simply scaled by the given value. Ifsample_weight
is a tensor of size[batch_size]
, then the total loss for each sample of the batch is rescaled by the corresponding element in thesample_weight
vector. If the shape ofsample_weight
is(batch_size, d0, ... dN-1)
(or can be broadcasted to this shape), then each loss element ofy_pred
is scaled by the corresponding value ofsample_weight
. (Note ondN-1
: all loss functions reduce by 1 dimension, usuallyaxis=-1
.)
By default, loss functions return one scalar loss value per input sample, e.g.
>>> from keras import ops
>>> keras.losses.mean_squared_error(ops.ones((2, 2,)), ops.zeros((2, 2)))
<Array: shape=(2,), dtype=float32, numpy=array([1., 1.], dtype=float32)>
However, loss class instances feature a reduction
constructor argument,
which defaults to "sum_over_batch_size"
(i.e. average). Allowable values are
“sum_over_batch_size”, “sum”, and “none”:
- “sum_over_batch_size” means the loss instance will return the average of the per-sample losses in the batch.
- “sum” means the loss instance will return the sum of the per-sample losses in the batch.
- “none” means the loss instance will return the full array of per-sample losses.
>>> loss_fn = keras.losses.MeanSquaredError(reduction='sum_over_batch_size')
>>> loss_fn(ops.ones((2, 2,)), ops.zeros((2, 2)))
<Array: shape=(), dtype=float32, numpy=1.0>
>>> loss_fn = keras.losses.MeanSquaredError(reduction='sum')
>>> loss_fn(ops.ones((2, 2,)), ops.zeros((2, 2)))
<Array: shape=(), dtype=float32, numpy=2.0>
>>> loss_fn = keras.losses.MeanSquaredError(reduction='none')
>>> loss_fn(ops.ones((2, 2,)), ops.zeros((2, 2)))
<Array: shape=(2,), dtype=float32, numpy=array([1., 1.], dtype=float32)>
Note that this is an important difference between loss functions like keras.losses.mean_squared_error
and default loss class instances like keras.losses.MeanSquaredError
: the function version
does not perform reduction, but by default the class instance does.
>>> loss_fn = keras.losses.mean_squared_error
>>> loss_fn(ops.ones((2, 2,)), ops.zeros((2, 2)))
<Array: shape=(2,), dtype=float32, numpy=array([1., 1.], dtype=float32)>
>>> loss_fn = keras.losses.MeanSquaredError()
>>> loss_fn(ops.ones((2, 2,)), ops.zeros((2, 2)))
<Array: shape=(), dtype=float32, numpy=1.0>
When using fit()
, this difference is irrelevant since reduction is handled by the framework.
Here’s how you would use a loss class instance as part of a simple training loop:
loss_fn = keras.losses.CategoricalCrossentropy(from_logits=True)
optimizer = keras.optimizers.Adam()
for x, y in dataset:
with tf.GradientTape() as tape:
logits = model(x)
# Compute the loss value for this batch.
loss_value = loss_fn(y, logits)
# Update the weights of the model to minimize the loss value.
gradients = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(gradients, model.trainable_weights))
Creating custom losses
Any callable with the signature loss_fn(y_true, y_pred)
that returns an array of losses (one of sample in the input batch) can be passed to compile()
as a loss.
Note that sample weighting is automatically supported for any such loss.
Here’s a simple example:
from keras import ops
def my_loss_fn(y_true, y_pred):
squared_difference = ops.square(y_true - y_pred)
return ops.mean(squared_difference, axis=-1) # Note the `axis=-1`
model.compile(optimizer='adam', loss=my_loss_fn)
The add_loss()
API
Loss functions applied to the output of a model aren’t the only way to create losses.
When writing the call
method of a custom layer or a subclassed model,
you may want to compute scalar quantities that you want to minimize during
training (e.g. regularization losses). You can use the add_loss()
layer method
to keep track of such loss terms.
Here’s an example of a layer that adds a sparsity regularization loss based on the L2 norm of the inputs:
from keras import ops
class MyActivityRegularizer(keras.layers.Layer):
"""Layer that creates an activity sparsity regularization loss."""
def __init__(self, rate=1e-2):
super().__init__()
self.rate = rate
def call(self, inputs):
# We use `add_loss` to create a regularization loss
# that depends on the inputs.
self.add_loss(self.rate * ops.sum(ops.square(inputs)))
return inputs
Loss values added via add_loss
can be retrieved in the .losses
list property of any Layer
or Model
(they are recursively retrieved from every underlying layer):
from keras import layers
from keras import ops
class SparseMLP(layers.Layer):
"""Stack of Linear layers with a sparsity regularization loss."""
def __init__(self, output_dim):
super().__init__()
self.dense_1 = layers.Dense(32, activation=ops.relu)
self.regularization = MyActivityRegularizer(1e-2)
self.dense_2 = layers.Dense(output_dim)
def call(self, inputs):
x = self.dense_1(inputs)
x = self.regularization(x)
return self.dense_2(x)
mlp = SparseMLP(1)
y = mlp(ops.ones((10, 10)))
print(mlp.losses) # List containing one float32 scalar
These losses are cleared by the top-level layer at the start of each forward pass – they don’t accumulate.
So layer.losses
always contain only the losses created during the last forward pass.
You would typically use these losses by summing them before computing your gradients when writing a training loop.
mlp = SparseMLP(1)
mlp(ops.ones((10, 10)))
assert len(mlp.losses) == 1
mlp(ops.ones((10, 10)))
assert len(mlp.losses) == 1 # No accumulation.
When using model.fit()
, such loss terms are handled automatically.
When writing a custom training loop, you should retrieve these terms
by hand from model.losses
, like this:
loss_fn = keras.losses.CategoricalCrossentropy(from_logits=True)
optimizer = keras.optimizers.Adam()
for x, y in dataset:
with tf.GradientTape() as tape:
# Forward pass.
logits = model(x)
# Loss value for this batch.
loss_value = loss_fn(y, logits)
# Add extra loss terms to the loss value.
loss_value += sum(model.losses)
# Update the weights of the model to minimize the loss value.
gradients = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(gradients, model.trainable_weights))
See the add_loss()
documentation for more details.