GRU layer
- 원본 링크 : https://keras.io/api/layers/recurrent_layers/gru/
- 최종 확인 : 2024-11-25
GRU
class
keras.layers.GRU(
units,
activation="tanh",
recurrent_activation="sigmoid",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
seed=None,
return_sequences=False,
return_state=False,
go_backwards=False,
stateful=False,
unroll=False,
reset_after=True,
use_cudnn="auto",
**kwargs
)
Gated Recurrent Unit - Cho et al. 2014.
Based on available runtime hardware and constraints, this layer will choose different implementations (cuDNN-based or backend-native) to maximize the performance. If a GPU is available and all the arguments to the layer meet the requirement of the cuDNN kernel (see below for details), the layer will use a fast cuDNN implementation when using the TensorFlow backend.
The requirements to use the cuDNN implementation are:
activation
==tanh
recurrent_activation
==sigmoid
dropout
== 0 andrecurrent_dropout
== 0unroll
isFalse
use_bias
isTrue
reset_after
isTrue
- Inputs, if use masking, are strictly right-padded.
- Eager execution is enabled in the outermost context.
There are two variants of the GRU implementation. The default one is based on v3 and has reset gate applied to hidden state before matrix multiplication. The other one is based on original and has the order reversed.
The second variant is compatible with CuDNNGRU (GPU-only) and allows inference on CPU. Thus it has separate biases for kernel
and recurrent_kernel
. To use this variant, set reset_after=True
and recurrent_activation='sigmoid'
.
For example:
>>> inputs = np.random.random((32, 10, 8))
>>> gru = keras.layers.GRU(4)
>>> output = gru(inputs)
>>> output.shape
(32, 4)
>>> gru = keras.layers.GRU(4, return_sequences=True, return_state=True)
>>> whole_sequence_output, final_state = gru(inputs)
>>> whole_sequence_output.shape
(32, 10, 4)
>>> final_state.shape
(32, 4)
Arguments
- units: Positive integer, dimensionality of the output space.
- activation: Activation function to use. Default: hyperbolic tangent (
tanh
). If you passNone
, no activation is applied (ie. “linear” activation:a(x) = x
). - recurrent_activation: Activation function to use for the recurrent step. Default: sigmoid (
sigmoid
). If you passNone
, no activation is applied (ie. “linear” activation:a(x) = x
). - use_bias: Boolean, (default
True
), whether the layer should use a bias vector. - kernel_initializer: Initializer for the
kernel
weights matrix, used for the linear transformation of the inputs. Default:"glorot_uniform"
. - recurrent_initializer: Initializer for the
recurrent_kernel
weights matrix, used for the linear transformation of the recurrent state. Default:"orthogonal"
. - bias_initializer: Initializer for the bias vector. Default:
"zeros"
. - kernel_regularizer: Regularizer function applied to the
kernel
weights matrix. Default:None
. - recurrent_regularizer: Regularizer function applied to the
recurrent_kernel
weights matrix. Default:None
. - bias_regularizer: Regularizer function applied to the bias vector. Default:
None
. - activity_regularizer: Regularizer function applied to the output of the layer (its “activation”). Default:
None
. - kernel_constraint: Constraint function applied to the
kernel
weights matrix. Default:None
. - recurrent_constraint: Constraint function applied to the
recurrent_kernel
weights matrix. Default:None
. - bias_constraint: Constraint function applied to the bias vector. Default:
None
. - dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0.
- recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0.
- seed: Random seed for dropout.
- return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. Default:
False
. - return_state: Boolean. Whether to return the last state in addition to the output. Default:
False
. - go_backwards: Boolean (default
False
). IfTrue
, process the input sequence backwards and return the reversed sequence. - stateful: Boolean (default:
False
). IfTrue
, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. - unroll: Boolean (default:
False
). IfTrue
, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. - reset_after: GRU convention (whether to apply reset gate after or before matrix multiplication).
False
is"before"
,True
is"after"
(default and cuDNN compatible). - use_cudnn: Whether to use a cuDNN-backed implementation.
"auto"
will attempt to use cuDNN when feasible, and will fallback to the default implementation if not.
Call arguments
- inputs: A 3D tensor, with shape
(batch, timesteps, feature)
. - mask: Binary tensor of shape
(samples, timesteps)
indicating whether a given timestep should be masked (optional). An individualTrue
entry indicates that the corresponding timestep should be utilized, while aFalse
entry indicates that the corresponding timestep should be ignored. Defaults toNone
. - training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant if
dropout
orrecurrent_dropout
is used (optional). Defaults toNone
. - initial_state: List of initial state tensors to be passed to the first call of the cell (optional,
None
causes creation of zero-filled initial state tensors). Defaults toNone
.