Bidirectional layer
- 원본 링크 : https://keras.io/api/layers/recurrent_layers/bidirectional/
- 최종 확인 : 2024-11-25
Bidirectional class
keras.layers.Bidirectional(
layer, merge_mode="concat", weights=None, backward_layer=None, **kwargs
)Bidirectional wrapper for RNNs.
Arguments
- layer:
keras.layers.RNNinstance, such askeras.layers.LSTMorkeras.layers.GRU. It could also be akeras.layers.Layerinstance that meets the following criteria:- Be a sequence-processing layer (accepts 3D+ inputs).
- Have a
go_backwards,return_sequencesandreturn_stateattribute (with the same semantics as for theRNNclass). - Have an
input_specattribute. - Implement serialization via
get_config()andfrom_config(). Note that the recommended way to create new RNN layers is to write a custom RNN cell and use it withkeras.layers.RNN, instead of subclassingkeras.layers.Layerdirectly. Whenreturn_sequencesisTrue, the output of the masked timestep will be zero regardless of the layer’s originalzero_output_for_maskvalue.
- merge_mode: Mode by which outputs of the forward and backward RNNs will be combined. One of
{"sum", "mul", "concat", "ave", None}. IfNone, the outputs will not be combined, they will be returned as a list. Defaults to"concat". - backward_layer: Optional
keras.layers.RNN, orkeras.layers.Layerinstance to be used to handle backwards input processing. Ifbackward_layeris not provided, the layer instance passed as thelayerargument will be used to generate the backward layer automatically. Note that the providedbackward_layerlayer should have properties matching those of thelayerargument, in particular it should have the same values forstateful,return_states,return_sequences, etc. In addition,backward_layerandlayershould have differentgo_backwardsargument values. AValueErrorwill be raised if these requirements are not met.
Call arguments
The call arguments for this layer are the same as those of the wrapped RNN layer. Beware that when passing the initial_state argument during the call of this layer, the first half in the list of elements in the initial_state list will be passed to the forward RNN call and the last half in the list of elements will be passed to the backward RNN call.
Note: instantiating a Bidirectional layer from an existing RNN layer instance will not reuse the weights state of the RNN layer instance – the Bidirectional layer will have freshly initialized weights.
Examples
model = Sequential([
Input(shape=(5, 10)),
Bidirectional(LSTM(10, return_sequences=True),
Bidirectional(LSTM(10)),
Dense(5, activation="softmax"),
])
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
# With custom backward layer
forward_layer = LSTM(10, return_sequences=True)
backward_layer = LSTM(10, activation='relu', return_sequences=True,
go_backwards=True)
model = Sequential([
Input(shape=(5, 10)),
Bidirectional(forward_layer, backward_layer=backward_layer),
Dense(5, activation="softmax"),
])
model.compile(loss='categorical_crossentropy', optimizer='rmsprop')