Layer weight initializers
- 원본 링크 : https://keras.io/api/layers/initializers/
- 최종 확인 : 2024-11-24
Usage of initializers
Initializers define the way to set the initial random weights of Keras layers.
The keyword arguments used for passing initializers to layers depends on the layer. Usually, it is simply kernel_initializer
and bias_initializer
:
from keras import layers
from keras import initializers
layer = layers.Dense(
units=64,
kernel_initializer=initializers.RandomNormal(stddev=0.01),
bias_initializer=initializers.Zeros()
)
All built-in initializers can also be passed via their string identifier:
layer = layers.Dense(
units=64,
kernel_initializer='random_normal',
bias_initializer='zeros'
)
Available initializers
The following built-in initializers are available as part of the keras.initializers
module:
RandomNormal
class
keras.initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)
Random normal initializer.
Draws samples from a normal distribution for given parameters.
Examples
>>> # Standalone usage:
>>> initializer = RandomNormal(mean=0.0, stddev=1.0)
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = RandomNormal(mean=0.0, stddev=1.0)
>>> layer = Dense(3, kernel_initializer=initializer)
Arguments
- mean: A python scalar or a scalar keras tensor. Mean of the random values to generate.
- stddev: A python scalar or a scalar keras tensor. Standard deviation of the random values to generate.
- seed: A Python integer or instance of
keras.backend.SeedGenerator
. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNone
(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofkeras.backend.SeedGenerator
.
RandomUniform
class
keras.initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)
Random uniform initializer.
Draws samples from a uniform distribution for given parameters.
Examples
>>> # Standalone usage:
>>> initializer = RandomUniform(minval=0.0, maxval=1.0)
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = RandomUniform(minval=0.0, maxval=1.0)
>>> layer = Dense(3, kernel_initializer=initializer)
Arguments
- minval: A python scalar or a scalar keras tensor. Lower bound of the range of random values to generate (inclusive).
- maxval: A python scalar or a scalar keras tensor. Upper bound of the range of random values to generate (exclusive).
- seed: A Python integer or instance of
keras.backend.SeedGenerator
. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNone
(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofkeras.backend.SeedGenerator
.
TruncatedNormal
class
keras.initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None)
Initializer that generates a truncated normal distribution.
The values generated are similar to values from a RandomNormal
initializer, except that values more than two standard deviations from the mean are discarded and re-drawn.
Examples
>>> # Standalone usage:
>>> initializer = TruncatedNormal(mean=0., stddev=1.)
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = TruncatedNormal(mean=0., stddev=1.)
>>> layer = Dense(3, kernel_initializer=initializer)
Arguments
- mean: A python scalar or a scalar keras tensor. Mean of the random values to generate.
- stddev: A python scalar or a scalar keras tensor. Standard deviation of the random values to generate.
- seed: A Python integer or instance of
keras.backend.SeedGenerator
. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNone
(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofkeras.backend.SeedGenerator
.
Zeros
class
keras.initializers.Zeros()
Initializer that generates tensors initialized to 0.
Examples
>>> # Standalone usage:
>>> initializer = Zeros()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = Zeros()
>>> layer = Dense(units=3, kernel_initializer=initializer)
Ones
class
keras.initializers.Ones()
Initializer that generates tensors initialized to 1.
Also available via the shortcut function ones
.
Examples
>>> # Standalone usage:
>>> initializer = Ones()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = Ones()
>>> layer = Dense(3, kernel_initializer=initializer)
GlorotNormal
class
keras.initializers.GlorotNormal(seed=None)
The Glorot normal initializer, also called Xavier normal initializer.
Draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / (fan_in + fan_out))
where fan_in
is the number of input units in the weight tensor and fan_out
is the number of output units in the weight tensor.
Examples
>>> # Standalone usage:
>>> initializer = GlorotNormal()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = GlorotNormal()
>>> layer = Dense(3, kernel_initializer=initializer)
Arguments
- seed: A Python integer or instance of
keras.backend.SeedGenerator
. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNone
(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofkeras.backend.SeedGenerator
.
Reference
GlorotUniform
class
keras.initializers.GlorotUniform(seed=None)
The Glorot uniform initializer, also called Xavier uniform initializer.
Draws samples from a uniform distribution within [-limit, limit]
, where limit = sqrt(6 / (fan_in + fan_out))
(fan_in
is the number of input units in the weight tensor and fan_out
is the number of output units).
Examples
>>> # Standalone usage:
>>> initializer = GlorotUniform()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = GlorotUniform()
>>> layer = Dense(3, kernel_initializer=initializer)
Arguments
- seed: A Python integer or instance of
keras.backend.SeedGenerator
. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNone
(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofkeras.backend.SeedGenerator
.
Reference
HeNormal
class
keras.initializers.HeNormal(seed=None)
He normal initializer.
It draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / fan_in)
where fan_in
is the number of input units in the weight tensor.
Examples
>>> # Standalone usage:
>>> initializer = HeNormal()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = HeNormal()
>>> layer = Dense(3, kernel_initializer=initializer)
Arguments
- seed: A Python integer or instance of
keras.backend.SeedGenerator
. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNone
(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofkeras.backend.SeedGenerator
.
Reference
HeUniform
class
keras.initializers.HeUniform(seed=None)
He uniform variance scaling initializer.
Draws samples from a uniform distribution within [-limit, limit]
, where limit = sqrt(6 / fan_in)
(fan_in
is the number of input units in the weight tensor).
Examples
>>> # Standalone usage:
>>> initializer = HeUniform()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = HeUniform()
>>> layer = Dense(3, kernel_initializer=initializer)
Arguments
- seed: A Python integer or instance of
keras.backend.SeedGenerator
. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNone
(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofkeras.backend.SeedGenerator
.
Reference
OrthogonalInitializer
class
keras.initializers.Orthogonal(gain=1.0, seed=None)
Initializer that generates an orthogonal matrix.
If the shape of the tensor to initialize is two-dimensional, it is initialized with an orthogonal matrix obtained from the QR decomposition of a matrix of random numbers drawn from a normal distribution. If the matrix has fewer rows than columns then the output will have orthogonal rows. Otherwise, the output will have orthogonal columns.
If the shape of the tensor to initialize is more than two-dimensional, a matrix of shape (shape[0] * ... * shape[n - 2], shape[n - 1])
is initialized, where n
is the length of the shape vector. The matrix is subsequently reshaped to give a tensor of the desired shape.
Examples
>>> # Standalone usage:
>>> initializer = keras.initializers.Orthogonal()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = keras.initializers.Orthogonal()
>>> layer = keras.layers.Dense(3, kernel_initializer=initializer)
Arguments
- gain: Multiplicative factor to apply to the orthogonal matrix.
- seed: A Python integer. Used to make the behavior of the initializer deterministic.
Reference
Constant
class
keras.initializers.Constant(value=0.0)
Initializer that generates tensors with constant values.
Only scalar values are allowed. The constant value provided must be convertible to the dtype requested when calling the initializer.
Examples
>>> # Standalone usage:
>>> initializer = Constant(10.)
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = Constant(10.)
>>> layer = Dense(3, kernel_initializer=initializer)
Arguments
- value: A Python scalar.
VarianceScaling
class
keras.initializers.VarianceScaling(
scale=1.0, mode="fan_in", distribution="truncated_normal", seed=None
)
Initializer that adapts its scale to the shape of its input tensors.
With distribution="truncated_normal" or "untruncated_normal"
, samples are drawn from a truncated/untruncated normal distribution with a mean of zero and a standard deviation (after truncation, if used) stddev = sqrt(scale / n)
, where n
is:
- number of input units in the weight tensor, if
mode="fan_in"
- number of output units, if
mode="fan_out"
- average of the numbers of input and output units, if
mode="fan_avg"
With distribution="uniform"
, samples are drawn from a uniform distribution within [-limit, limit]
, where limit = sqrt(3 * scale / n)
.
Examples
>>> # Standalone usage:
>>> initializer = VarianceScaling(scale=0.1, mode='fan_in', distribution='uniform')
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = VarianceScaling(scale=0.1, mode='fan_in', distribution='uniform')
>>> layer = Dense(3, kernel_initializer=initializer)
Arguments
- scale: Scaling factor (positive float).
- mode: One of
"fan_in"
,"fan_out"
,"fan_avg"
. - distribution: Random distribution to use. One of
"truncated_normal"
,"untruncated_normal"
, or"uniform"
. - seed: A Python integer or instance of
keras.backend.SeedGenerator
. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNone
(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofkeras.backend.SeedGenerator
.
LecunNormal
class
keras.initializers.LecunNormal(seed=None)
Lecun normal initializer.
Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized.
Draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(1 / fan_in)
where fan_in
is the number of input units in the weight tensor.
Examples
>>> # Standalone usage:
>>> initializer = LecunNormal()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = LecunNormal()
>>> layer = Dense(3, kernel_initializer=initializer)
Arguments
- seed: A Python integer or instance of
keras.backend.SeedGenerator
. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNone
(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofkeras.backend.SeedGenerator
.
Reference
LecunUniform
class
keras.initializers.LecunUniform(seed=None)
Lecun uniform initializer.
Draws samples from a uniform distribution within [-limit, limit]
, where limit = sqrt(3 / fan_in)
(fan_in
is the number of input units in the weight tensor).
Examples
>>> # Standalone usage:
>>> initializer = LecunUniform()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = LecunUniform()
>>> layer = Dense(3, kernel_initializer=initializer)
Arguments
- seed: A Python integer or instance of
keras.backend.SeedGenerator
. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNone
(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofkeras.backend.SeedGenerator
.
Reference
Identity
class
keras.initializers.IdentityInitializer(gain=1.0)
Initializer that generates the identity matrix.
Only usable for generating 2D matrices.
Examples
>>> # Standalone usage:
>>> initializer = Identity()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = Identity()
>>> layer = Dense(3, kernel_initializer=initializer)
Arguments
- gain: Multiplicative factor to apply to the identity matrix.
Creating custom initializers
Simple callables
You can pass a custom callable as initializer. It must take the arguments shape
(shape of the variable to initialize) and dtype
(dtype of generated values):
def my_init(shape, dtype=None):
return keras.random.normal(shape, dtype=dtype)
layer = Dense(64, kernel_initializer=my_init)
Initializer
subclasses
If you need to configure your initializer via various arguments (e.g. stddev
argument in RandomNormal
), you should implement it as a subclass of keras.initializers.Initializer
.
Initializers should implement a __call__
method with the following signature:
def __call__(self, shape, dtype=None)`:
# returns a tensor of shape `shape` and dtype `dtype`
# containing values drawn from a distribution of your choice.
Optionally, you an also implement the method get_config
and the class method from_config
in order to support serialization – just like with any Keras object.
Here’s a simple example: a random normal initializer.
class ExampleRandomNormal(keras.initializers.Initializer):
def __init__(self, mean, stddev):
self.mean = mean
self.stddev = stddev
def __call__(self, shape, dtype=None)`:
return keras.random.normal(
shape, mean=self.mean, stddev=self.stddev, dtype=dtype)
def get_config(self): # To support serialization
return {'mean': self.mean, 'stddev': self.stddev}
Note that we don’t have to implement from_config
in the example above since the constructor arguments of the class the keys in the config returned by get_config
are the same. In this case, the default from_config
works fine.