Layer weight initializers

Layer weight initializers

Usage of initializers

Initializers define the way to set the initial random weights of Keras layers.

The keyword arguments used for passing initializers to layers depends on the layer. Usually, it is simply kernel_initializer and bias_initializer:

from keras import layers
from keras import initializers

layer = layers.Dense(
    units=64,
    kernel_initializer=initializers.RandomNormal(stddev=0.01),
    bias_initializer=initializers.Zeros()
)

All built-in initializers can also be passed via their string identifier:

layer = layers.Dense(
    units=64,
    kernel_initializer='random_normal',
    bias_initializer='zeros'
)

Available initializers

The following built-in initializers are available as part of the keras.initializers module:

source

RandomNormal class

keras.initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)

Random normal initializer.

Draws samples from a normal distribution for given parameters.

Examples

>>> # Standalone usage:
>>> initializer = RandomNormal(mean=0.0, stddev=1.0)
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = RandomNormal(mean=0.0, stddev=1.0)
>>> layer = Dense(3, kernel_initializer=initializer)

Arguments

  • mean: A python scalar or a scalar keras tensor. Mean of the random values to generate.
  • stddev: A python scalar or a scalar keras tensor. Standard deviation of the random values to generate.
  • seed: A Python integer or instance of keras.backend.SeedGenerator. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or None (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of keras.backend.SeedGenerator.

source

RandomUniform class

keras.initializers.RandomUniform(minval=-0.05, maxval=0.05, seed=None)

Random uniform initializer.

Draws samples from a uniform distribution for given parameters.

Examples

>>> # Standalone usage:
>>> initializer = RandomUniform(minval=0.0, maxval=1.0)
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = RandomUniform(minval=0.0, maxval=1.0)
>>> layer = Dense(3, kernel_initializer=initializer)

Arguments

  • minval: A python scalar or a scalar keras tensor. Lower bound of the range of random values to generate (inclusive).
  • maxval: A python scalar or a scalar keras tensor. Upper bound of the range of random values to generate (exclusive).
  • seed: A Python integer or instance of keras.backend.SeedGenerator. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or None (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of keras.backend.SeedGenerator.

source

TruncatedNormal class

keras.initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None)

Initializer that generates a truncated normal distribution.

The values generated are similar to values from a RandomNormal initializer, except that values more than two standard deviations from the mean are discarded and re-drawn.

Examples

>>> # Standalone usage:
>>> initializer = TruncatedNormal(mean=0., stddev=1.)
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = TruncatedNormal(mean=0., stddev=1.)
>>> layer = Dense(3, kernel_initializer=initializer)

Arguments

  • mean: A python scalar or a scalar keras tensor. Mean of the random values to generate.
  • stddev: A python scalar or a scalar keras tensor. Standard deviation of the random values to generate.
  • seed: A Python integer or instance of keras.backend.SeedGenerator. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or None (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of keras.backend.SeedGenerator.

source

Zeros class

keras.initializers.Zeros()

Initializer that generates tensors initialized to 0.

Examples

>>> # Standalone usage:
>>> initializer = Zeros()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = Zeros()
>>> layer = Dense(units=3, kernel_initializer=initializer)

source

Ones class

keras.initializers.Ones()

Initializer that generates tensors initialized to 1.

Also available via the shortcut function ones.

Examples

>>> # Standalone usage:
>>> initializer = Ones()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = Ones()
>>> layer = Dense(3, kernel_initializer=initializer)

source

GlorotNormal class

keras.initializers.GlorotNormal(seed=None)

The Glorot normal initializer, also called Xavier normal initializer.

Draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / (fan_in + fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor.

Examples

>>> # Standalone usage:
>>> initializer = GlorotNormal()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = GlorotNormal()
>>> layer = Dense(3, kernel_initializer=initializer)

Arguments

  • seed: A Python integer or instance of keras.backend.SeedGenerator. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or None (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of keras.backend.SeedGenerator.

Reference

source

GlorotUniform class

keras.initializers.GlorotUniform(seed=None)

The Glorot uniform initializer, also called Xavier uniform initializer.

Draws samples from a uniform distribution within [-limit, limit], where limit = sqrt(6 / (fan_in + fan_out)) (fan_in is the number of input units in the weight tensor and fan_out is the number of output units).

Examples

>>> # Standalone usage:
>>> initializer = GlorotUniform()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = GlorotUniform()
>>> layer = Dense(3, kernel_initializer=initializer)

Arguments

  • seed: A Python integer or instance of keras.backend.SeedGenerator. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or None (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of keras.backend.SeedGenerator.

Reference

source

HeNormal class

keras.initializers.HeNormal(seed=None)

He normal initializer.

It draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(2 / fan_in) where fan_in is the number of input units in the weight tensor.

Examples

>>> # Standalone usage:
>>> initializer = HeNormal()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = HeNormal()
>>> layer = Dense(3, kernel_initializer=initializer)

Arguments

  • seed: A Python integer or instance of keras.backend.SeedGenerator. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or None (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of keras.backend.SeedGenerator.

Reference

source

HeUniform class

keras.initializers.HeUniform(seed=None)

He uniform variance scaling initializer.

Draws samples from a uniform distribution within [-limit, limit], where limit = sqrt(6 / fan_in) (fan_in is the number of input units in the weight tensor).

Examples

>>> # Standalone usage:
>>> initializer = HeUniform()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = HeUniform()
>>> layer = Dense(3, kernel_initializer=initializer)

Arguments

  • seed: A Python integer or instance of keras.backend.SeedGenerator. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or None (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of keras.backend.SeedGenerator.

Reference

source

OrthogonalInitializer class

keras.initializers.Orthogonal(gain=1.0, seed=None)

Initializer that generates an orthogonal matrix.

If the shape of the tensor to initialize is two-dimensional, it is initialized with an orthogonal matrix obtained from the QR decomposition of a matrix of random numbers drawn from a normal distribution. If the matrix has fewer rows than columns then the output will have orthogonal rows. Otherwise, the output will have orthogonal columns.

If the shape of the tensor to initialize is more than two-dimensional, a matrix of shape (shape[0] * ... * shape[n - 2], shape[n - 1]) is initialized, where n is the length of the shape vector. The matrix is subsequently reshaped to give a tensor of the desired shape.

Examples

>>> # Standalone usage:
>>> initializer = keras.initializers.Orthogonal()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = keras.initializers.Orthogonal()
>>> layer = keras.layers.Dense(3, kernel_initializer=initializer)

Arguments

  • gain: Multiplicative factor to apply to the orthogonal matrix.
  • seed: A Python integer. Used to make the behavior of the initializer deterministic.

Reference

source

Constant class

keras.initializers.Constant(value=0.0)

Initializer that generates tensors with constant values.

Only scalar values are allowed. The constant value provided must be convertible to the dtype requested when calling the initializer.

Examples

>>> # Standalone usage:
>>> initializer = Constant(10.)
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = Constant(10.)
>>> layer = Dense(3, kernel_initializer=initializer)

Arguments

  • value: A Python scalar.

source

VarianceScaling class

keras.initializers.VarianceScaling(
    scale=1.0, mode="fan_in", distribution="truncated_normal", seed=None
)

Initializer that adapts its scale to the shape of its input tensors.

With distribution="truncated_normal" or "untruncated_normal", samples are drawn from a truncated/untruncated normal distribution with a mean of zero and a standard deviation (after truncation, if used) stddev = sqrt(scale / n), where n is:

  • number of input units in the weight tensor, if mode="fan_in"
  • number of output units, if mode="fan_out"
  • average of the numbers of input and output units, if mode="fan_avg"

With distribution="uniform", samples are drawn from a uniform distribution within [-limit, limit], where limit = sqrt(3 * scale / n).

Examples

>>> # Standalone usage:
>>> initializer = VarianceScaling(scale=0.1, mode='fan_in', distribution='uniform')
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = VarianceScaling(scale=0.1, mode='fan_in', distribution='uniform')
>>> layer = Dense(3, kernel_initializer=initializer)

Arguments

  • scale: Scaling factor (positive float).
  • mode: One of "fan_in", "fan_out", "fan_avg".
  • distribution: Random distribution to use. One of "truncated_normal", "untruncated_normal", or "uniform".
  • seed: A Python integer or instance of keras.backend.SeedGenerator. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or None (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of keras.backend.SeedGenerator.

source

LecunNormal class

keras.initializers.LecunNormal(seed=None)

Lecun normal initializer.

Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized.

Draws samples from a truncated normal distribution centered on 0 with stddev = sqrt(1 / fan_in) where fan_in is the number of input units in the weight tensor.

Examples

>>> # Standalone usage:
>>> initializer = LecunNormal()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = LecunNormal()
>>> layer = Dense(3, kernel_initializer=initializer)

Arguments

  • seed: A Python integer or instance of keras.backend.SeedGenerator. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or None (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of keras.backend.SeedGenerator.

Reference

source

LecunUniform class

keras.initializers.LecunUniform(seed=None)

Lecun uniform initializer.

Draws samples from a uniform distribution within [-limit, limit], where limit = sqrt(3 / fan_in) (fan_in is the number of input units in the weight tensor).

Examples

>>> # Standalone usage:
>>> initializer = LecunUniform()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = LecunUniform()
>>> layer = Dense(3, kernel_initializer=initializer)

Arguments

  • seed: A Python integer or instance of keras.backend.SeedGenerator. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or None (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of keras.backend.SeedGenerator.

Reference

source

Identity class

keras.initializers.IdentityInitializer(gain=1.0)

Initializer that generates the identity matrix.

Only usable for generating 2D matrices.

Examples

>>> # Standalone usage:
>>> initializer = Identity()
>>> values = initializer(shape=(2, 2))
>>> # Usage in a Keras layer:
>>> initializer = Identity()
>>> layer = Dense(3, kernel_initializer=initializer)

Arguments

  • gain: Multiplicative factor to apply to the identity matrix.

Creating custom initializers

Simple callables

You can pass a custom callable as initializer. It must take the arguments shape (shape of the variable to initialize) and dtype (dtype of generated values):

def my_init(shape, dtype=None):
    return keras.random.normal(shape, dtype=dtype)

layer = Dense(64, kernel_initializer=my_init)

Initializer subclasses

If you need to configure your initializer via various arguments (e.g. stddev argument in RandomNormal), you should implement it as a subclass of keras.initializers.Initializer.

Initializers should implement a __call__ method with the following signature:

def __call__(self, shape, dtype=None)`:
    # returns a tensor of shape `shape` and dtype `dtype`
    # containing values drawn from a distribution of your choice.

Optionally, you an also implement the method get_config and the class method from_config in order to support serialization – just like with any Keras object.

Here’s a simple example: a random normal initializer.

class ExampleRandomNormal(keras.initializers.Initializer):

    def __init__(self, mean, stddev):
      self.mean = mean
      self.stddev = stddev

    def __call__(self, shape, dtype=None)`:
      return keras.random.normal(
          shape, mean=self.mean, stddev=self.stddev, dtype=dtype)

    def get_config(self):  # To support serialization
      return {'mean': self.mean, 'stddev': self.stddev}

Note that we don’t have to implement from_config in the example above since the constructor arguments of the class the keys in the config returned by get_config are the same. In this case, the default from_config works fine.