ReLU layer
- 원본 링크 : https://keras.io/api/layers/activation_layers/relu/
- 최종 확인 : 2024-11-25
ReLU
class
keras.layers.ReLU(max_value=None, negative_slope=0.0, threshold=0.0, **kwargs)
Rectified Linear Unit activation function layer.
Formula:
f(x) = max(x,0)
f(x) = max_value if x >= max_value
f(x) = x if threshold <= x < max_value
f(x) = negative_slope * (x - threshold) otherwise
Example
relu_layer = keras.layers.activations.ReLU(
max_value=10,
negative_slope=0.5,
threshold=0,
)
input = np.array([-10, -5, 0.0, 5, 10])
result = relu_layer(input)
Arguments
- max_value: Float >= 0. Maximum activation value. None means unlimited.
Defaults to
None
. - negative_slope: Float >= 0. Negative slope coefficient.
Defaults to
0.0
. - threshold: Float >= 0. Threshold value for thresholded activation.
Defaults to
0.0
. - **kwargs: Base layer keyword arguments, such as
name
anddtype
.