HyperParameters
- 원본 링크 : https://keras.io/api/keras_tuner/hyperparameters/
- 최종 확인 : 2024-11-25
HyperParameters class
keras_tuner.HyperParameters()Container for both a hyperparameter space, and current values.
A HyperParameters instance can be pass to HyperModel.build(hp) as an
argument to build a model.
To prevent the users from depending on inactive hyperparameter values, only
active hyperparameters should have values in HyperParameters.values.
Attributes
- space: A list of
HyperParameterobjects. - values: A dict mapping hyperparameter names to current values.
Boolean method
HyperParameters.Boolean(name, default=False, parent_name=None, parent_values=None)Choice between True and False.
Arguments
- name: A string. the name of parameter. Must be unique for each
HyperParameterinstance in the search space. - default: Boolean, the default value to return for the parameter. If unspecified, the default value will be False.
- parent_name: Optional string, specifying the name of the parent
HyperParameterto use as the condition to activate the currentHyperParameter. - parent_values: Optional list of the values of the parent
HyperParameterto use as the condition to activate the currentHyperParameter.
Returns
The value of the hyperparameter, or None if the hyperparameter is not active.
Choice method
HyperParameters.Choice(
name, values, ordered=None, default=None, parent_name=None, parent_values=None
)Choice of one value among a predefined set of possible values.
Arguments
- name: A string. the name of parameter. Must be unique for each
HyperParameterinstance in the search space. - values: A list of possible values. Values must be int, float, str, or bool. All values must be of the same type.
- ordered: Optional boolean, whether the values passed should be
considered to have an ordering. Defaults to
Truefor float/int values. Must beFalsefor any other values. - default: Optional default value to return for the parameter.
If unspecified, the default value will be:
- None if None is one of the choices in
values - The first entry in
valuesotherwise.
- None if None is one of the choices in
- parent_name: Optional string, specifying the name of the parent
HyperParameterto use as the condition to activate the currentHyperParameter. - parent_values: Optional list of the values of the parent
HyperParameterto use as the condition to activate the currentHyperParameter.
Returns
The value of the hyperparameter, or None if the hyperparameter is not active.
Fixed method
HyperParameters.Fixed(name, value, parent_name=None, parent_values=None)Fixed, untunable value.
Arguments
- name: A string. the name of parameter. Must be unique for each
HyperParameterinstance in the search space. - value: The value to use (can be any JSON-serializable Python type).
- parent_name: Optional string, specifying the name of the parent
HyperParameterto use as the condition to activate the currentHyperParameter. - parent_values: Optional list of the values of the parent
HyperParameterto use as the condition to activate the currentHyperParameter.
Returns
The value of the hyperparameter, or None if the hyperparameter is not active.
Float method
HyperParameters.Float(
name,
min_value,
max_value,
step=None,
sampling="linear",
default=None,
parent_name=None,
parent_values=None,
)Floating point value hyperparameter.
Example #1:
hp.Float(
"image_rotation_factor",
min_value=0,
max_value=1)All values in interval [0, 1] have equal probability of being sampled.
Example #2:
hp.Float(
"image_rotation_factor",
min_value=0,
max_value=1,
step=0.2)step is the minimum distance between samples.
The possible values are [0, 0.2, 0.4, 0.6, 0.8, 1.0].
Example #3:
hp.Float(
"learning_rate",
min_value=0.001,
max_value=10,
step=10,
sampling="log")When sampling="log", the step is multiplied between samples.
The possible values are [0.001, 0.01, 0.1, 1, 10].
Arguments
- name: A string. the name of parameter. Must be unique for each
HyperParameterinstance in the search space. - min_value: Float, the lower bound of the range.
- max_value: Float, the upper bound of the range.
- step: Optional float, the distance between two consecutive samples
in the range. If left unspecified, it is possible to sample any
value in the interval. If
sampling="linear", it will be the minimum additve between two samples. Ifsampling="log", it will be the minimum multiplier between two samples. - sampling: String. One of “linear”, “log”, “reverse_log”. Defaults to
“linear”. When sampling value, it always start from a value in
range [0.0, 1.0). The
samplingargument decides how the value is projected into the range of [min_value, max_value]. “linear”: min_value + value * (max_value - min_value) “log”: min_value * (max_value / min_value) ^ value “reverse_log”: (max_value - min_value * ((max_value / min_value) ^ (1 - value) - 1)) - default: Float, the default value to return for the parameter. If
unspecified, the default value will be
min_value. - parent_name: Optional string, specifying the name of the parent
HyperParameterto use as the condition to activate the currentHyperParameter. - parent_values: Optional list of the values of the parent
HyperParameterto use as the condition to activate the currentHyperParameter.
Returns
The value of the hyperparameter, or None if the hyperparameter is not active.
Int method
HyperParameters.Int(
name,
min_value,
max_value,
step=None,
sampling="linear",
default=None,
parent_name=None,
parent_values=None,
)Integer hyperparameter.
Note that unlike Python’s range function, max_value is included in
the possible values this parameter can take on.
Example #1:
hp.Int(
"n_layers",
min_value=6,
max_value=12)The possible values are [6, 7, 8, 9, 10, 11, 12].
Example #2:
hp.Int(
"n_layers",
min_value=6,
max_value=13,
step=3)step is the minimum distance between samples.
The possible values are [6, 9, 12].
Example #3:
hp.Int(
"batch_size",
min_value=2,
max_value=32,
step=2,
sampling="log")When sampling="log" the step is multiplied between samples.
The possible values are [2, 4, 8, 16, 32].
Arguments
- name: A string. the name of parameter. Must be unique for each
HyperParameterinstance in the search space. - min_value: Integer, the lower limit of range, inclusive.
- max_value: Integer, the upper limit of range, inclusive.
- step: Optional integer, the distance between two consecutive samples
in the range. If left unspecified, it is possible to sample any
integers in the interval. If
sampling="linear", it will be the minimum additve between two samples. Ifsampling="log", it will be the minimum multiplier between two samples. - sampling: String. One of “linear”, “log”, “reverse_log”. Defaults to
“linear”. When sampling value, it always start from a value in
range [0.0, 1.0). The
samplingargument decides how the value is projected into the range of [min_value, max_value]. “linear”: min_value + value * (max_value - min_value) “log”: min_value * (max_value / min_value) ^ value “reverse_log”: (max_value - min_value * ((max_value / min_value) ^ (1 - value) - 1)) - default: Integer, default value to return for the parameter. If
unspecified, the default value will be
min_value. - parent_name: Optional string, specifying the name of the parent
HyperParameterto use as the condition to activate the currentHyperParameter. - parent_values: Optional list of the values of the parent
HyperParameterto use as the condition to activate the currentHyperParameter.
Returns
The value of the hyperparameter, or None if the hyperparameter is not active.
conditional_scope method
HyperParameters.conditional_scope(parent_name, parent_values)Opens a scope to create conditional HyperParameters.
All HyperParameters created under this scope will only be active when
the parent HyperParameter specified by parent_name is equal to one
of the values passed in parent_values.
When the condition is not met, creating a HyperParameter under this
scope will register the HyperParameter, but will return None rather
than a concrete value.
Note that any Python code under this scope will execute regardless of whether the condition is met.
This feature is for the Tuner to collect more information of the
search space and the current trial. It is especially useful for model
selection. If the parent HyperParameter is for model selection, the
HyperParameters in a model should only be active when the model
selected, which can be implemented using conditional_scope.
Examples
def MyHyperModel(HyperModel):
def build(self, hp):
model = Sequential()
model.add(Input(shape=(32, 32, 3)))
model_type = hp.Choice("model_type", ["mlp", "cnn"])
with hp.conditional_scope("model_type", ["mlp"]):
if model_type == "mlp":
model.add(Flatten())
model.add(Dense(32, activation='relu'))
with hp.conditional_scope("model_type", ["cnn"]):
if model_type == "cnn":
model.add(Conv2D(64, 3, activation='relu'))
model.add(GlobalAveragePooling2D())
model.add(Dense(10, activation='softmax'))
return modelArguments
- parent_name: A string, specifying the name of the parent
HyperParameterto use as the condition to activate the currentHyperParameter. - parent_values: A list of the values of the parent
HyperParameterto use as the condition to activate the currentHyperParameter.
get method
HyperParameters.get(name)Return the current value of this hyperparameter set.