Llama3Tokenizer
- 원본 링크 : https://keras.io/api/keras_nlp/models/llama3/llama3_tokenizer/
- 최종 확인 : 2024-11-26
Llama3Tokenizer
class
keras_nlp.tokenizers.Llama3Tokenizer(
vocabulary=None,
merges=None,
bos_token="<|begin_of_text|>",
eos_token="<|end_of_text|>",
misc_special_tokens={"<|end_header_id|>", "<|start_header_id|>"},
**kwargs
)
Bype-pair encoding tokenizer layer.
This BPE tokenizer provides the same functionality as the official GPT-2
tokenizer. Given the same vocabulary
which maps tokens to ids, and merges
which describes BPE merge rules, it should provide the same output
as OpenAI implementation (https://github.com/openai/gpt-2/blob/master/src/encoder.py).
Different from OpenAI, this implementation is graph-compatible, so you can
use it within a tf.data
pipeline.
If input is a batch of strings (rank > 0):
By default, the layer will output a tf.RaggedTensor
where the last
dimension of the output is ragged. If sequence_length
is set, the layer
will output a dense tf.Tensor
where all inputs have been padded or
truncated to sequence_length
.
If input is a scalar string (rank == 0):
By default, the layer will output a dense tf.Tensor
with static shape
[None]
. If sequence_length
is set, the output will be
a dense tf.Tensor
of shape [sequence_length]
.
Arguments
- vocabulary: string or dict, maps token to integer ids. If it is a string, it should be the file path to a json file.
- merges: string or list, contains the merge rule. If it is a string, it should be the file path to merge rules. The merge rule file should have one merge rule per line.
- sequence_length: int. If set, the output will be
padded or truncated to the
sequence_length
. Defaults toNone
. - add_prefix_space: bool. Whether to add an
initial space to the input. This tokenizer is whitespace aware,
and will tokenize a word with a leading space differently. Adding
a prefix space to the first word will cause it to be tokenized
equivalently to all subsequent words in the sequence.
Defaults to
False
. - unsplittable_tokens: list. A list of strings that will
never be split during the word-level splitting applied before the
byte-pair encoding. This can be used to ensure special tokens map to
unique indices in the vocabulary, even if these special tokens
contain splittable characters such as punctuation. Special tokens
must still be included in
vocabulary
. Defaults toNone
.
Examples
Tokenize
>>> vocab = {"butter": 1, "fly": 2}
>>> merge = ["b u", "t t", "e r", "bu tt", "butt er", "f l", "fl y"]
>>> tokenizer = keras_hub.tokenizers.BytePairTokenizer(vocab, merge)
>>> outputs = tokenizer("butterfly")
>>> np.array(outputs)
array([1, 2], dtype=int32)
>>> seq1, seq2 = tokenizer(["butterfly", "butter"])
>>> np.array(seq1)
array([1, 2])
>>> np.array(seq2)
array([1])
>>> tokenizer = keras_hub.tokenizers.BytePairTokenizer(
... vocab, merge, sequence_length=2)
>>> seq1, seq2 = tokenizer(["butterfly", "butter"])
>>> np.array(seq1)
array([1, 2], dtype=int32)
>>> np.array(seq2)
array([1, 0], dtype=int32)
Detokenize
>>> vocab = {"butter": 1, "fly": 2}
>>> merge = ["b u", "t t", "e r", "bu tt", "butt er", "f l", "fl y"]
>>> tokenizer = keras_hub.tokenizers.BytePairTokenizer(vocab, merge)
>>> tokenizer.detokenize([[1, 2]])
['butterfly']
from_preset
method
Llama3Tokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
- a built-in preset identifier like
'bert_base_en'
- a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en'
- a Hugging Face handle like
'hf://user/bert_base_en'
- a path to a local preset directory like
'./bert_base_en'
For any Tokenizer
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset()
, or from
a model class like keras_hub.models.GemmaTokenizer.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
- load_weights: bool. If
True
, the weights will be loaded into the model architecture. IfFalse
, the weights will be randomly initialized.
Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
Preset name | Parameters | Description |
---|---|---|
llama3_8b_en | 8.03B | 8 billion parameter, 32-layer, base LLaMA 3 model. |
llama3_8b_en_int8 | 8.03B | 8 billion parameter, 32-layer, base LLaMA 3 model with activation and weights quantized to int8. |
llama3_instruct_8b_en | 8.03B | 8 billion parameter, 32-layer, instruction tuned LLaMA 3 model. |
llama3_instruct_8b_en_int8 | 8.03B | 8 billion parameter, 32-layer, instruction tuned LLaMA 3 model with activation and weights quantized to int8. |