DebertaV3Tokenizer
- 원본 링크 : https://keras.io/api/keras_nlp/models/deberta_v3/deberta_v3_tokenizer/
- 최종 확인 : 2024-11-26
DebertaV3Tokenizer
class
keras_nlp.tokenizers.DebertaV3Tokenizer(proto, **kwargs)
DeBERTa tokenizer layer based on SentencePiece.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.SentencePieceTokenizer
. Unlike the
underlying tokenizer, it will check for all special tokens needed by
DeBERTa models and provides a from_preset()
method to automatically
download a matching vocabulary for a DeBERTa preset.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor
where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor
with static shape [None]
.
Note: The mask token ("[MASK]"
) is handled differently in this tokenizer.
If the token is not present in the provided SentencePiece vocabulary, the
token will be appended to the vocabulary. For example, if the vocabulary
size is 100, the mask token will be assigned the ID 100.
Arguments
- proto: Either a
string
path to a SentencePiece proto file, or abytes
object with a serialized SentencePiece proto. See the SentencePiece repository for more details on the format.
Examples
# Unbatched input.
tokenizer = keras_hub.models.DebertaV3Tokenizer.from_preset(
"deberta_v3_base_en",
)
tokenizer("The quick brown fox jumped.")
# Batched inputs.
tokenizer(["the quick brown fox", "the earth is round"])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=9,
model_type="WORD",
pad_id=0,
bos_id=1,
eos_id=2,
unk_id=3,
pad_piece="[PAD]",
bos_piece="[CLS]",
eos_piece="[SEP]",
unk_piece="[UNK]",
)
tokenizer = keras_hub.models.DebertaV3Tokenizer(
proto=bytes_io.getvalue(),
)
tokenizer("The quick brown fox jumped.")
from_preset
method
DebertaV3Tokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
- a built-in preset identifier like
'bert_base_en'
- a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en'
- a Hugging Face handle like
'hf://user/bert_base_en'
- a path to a local preset directory like
'./bert_base_en'
For any Tokenizer
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset()
, or from
a model class like keras_hub.models.GemmaTokenizer.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
- load_weights: bool. If
True
, the weights will be loaded into the model architecture. IfFalse
, the weights will be randomly initialized.
Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
Preset name | Parameters | Description |
---|---|---|
deberta_v3_extra_small_en | 70.68M | 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
deberta_v3_small_en | 141.30M | 6-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
deberta_v3_base_en | 183.83M | 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
deberta_v3_large_en | 434.01M | 24-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
deberta_v3_base_multi | 278.22M | 12-layer DeBERTaV3 model where case is maintained. Trained on the 2.5TB multilingual CC100 dataset. |