BertMaskedLM model
- 원본 링크 : https://keras.io/api/keras_nlp/models/bert/bert_masked_lm/
- 최종 확인 : 2024-11-26
BertMaskedLM class
keras_nlp.models.BertMaskedLM(backbone, preprocessor=None, **kwargs)An end-to-end BERT model for the masked language modeling task.
This model will train BERT on a masked language modeling task.
The model will predict labels for a number of masked tokens in the
input data. For usage of this model with pre-trained weights, see the
from_preset() constructor.
This model can optionally be configured with a preprocessor layer, in
which case inputs can be raw string features during fit(), predict(),
and evaluate(). Inputs will be tokenized and dynamically masked during
training and evaluation. This is done by default when creating the model
with from_preset().
Disclaimer: Pre-trained models are provided on an “as is” basis, without warranties or conditions of any kind.
Arguments
- backbone: A
keras_hub.models.BertBackboneinstance. - preprocessor: A
keras_hub.models.BertMaskedLMPreprocessororNone. IfNone, this model will not apply preprocessing, and inputs should be preprocessed before calling the model.
Examples
Raw string data.
features = ["The quick brown fox jumped.", "I forgot my homework."]
# Pretrained language model.
masked_lm = keras_hub.models.BertMaskedLM.from_preset(
"bert_base_en_uncased",
)
masked_lm.fit(x=features, batch_size=2)
# Re-compile (e.g., with a new learning rate).
masked_lm.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
masked_lm.backbone.trainable = False
# Fit again.
masked_lm.fit(x=features, batch_size=2)Preprocessed integer data.
# Create preprocessed batch where 0 is the mask token.
features = {
"token_ids": np.array([[1, 2, 0, 4, 0, 6, 7, 8]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1]] * 2),
"mask_positions": np.array([[2, 4]] * 2),
"segment_ids": np.array([[0, 0, 0, 0, 0, 0, 0, 0]] * 2)
}
# Labels are the original masked values.
labels = [[3, 5]] * 2
masked_lm = keras_hub.models.BertMaskedLM.from_preset(
"bert_base_en_uncased",
preprocessor=None,
)
masked_lm.fit(x=features, y=labels, batch_size=2)from_preset method
BertMaskedLM.from_preset(preset, load_weights=True, **kwargs)Instantiate a keras_hub.models.Task from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
- a built-in preset identifier like
'bert_base_en' - a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en' - a Hugging Face handle like
'hf://user/bert_base_en' - a path to a local preset directory like
'./bert_base_en'
For any Task subclass, you can run cls.presets.keys() to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset(), or
from a model class like keras_hub.models.BertTextClassifier.from_preset().
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
- load_weights: bool. If
True, saved weights will be loaded into the model architecture. IfFalse, all weights will be randomly initialized.
Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)| Preset name | Parameters | Description |
|---|---|---|
| bert_tiny_en_uncased | 4.39M | 2-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_small_en_uncased | 28.76M | 4-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_medium_en_uncased | 41.37M | 8-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_base_en_uncased | 109.48M | 12-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_base_en | 108.31M | 12-layer BERT model where case is maintained. Trained on English Wikipedia + BooksCorpus. |
| bert_base_zh | 102.27M | 12-layer BERT model. Trained on Chinese Wikipedia. |
| bert_base_multi | 177.85M | 12-layer BERT model where case is maintained. Trained on trained on Wikipedias of 104 languages |
| bert_large_en_uncased | 335.14M | 24-layer BERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
| bert_large_en | 333.58M | 24-layer BERT model where case is maintained. Trained on English Wikipedia + BooksCorpus. |
| bert_tiny_en_uncased_sst2 | 4.39M | The bert_tiny_en_uncased backbone model fine-tuned on the SST-2 sentiment analysis dataset. |
backbone property
keras_nlp.models.BertMaskedLM.backboneA keras_hub.models.Backbone model with the core architecture.
preprocessor property
keras_nlp.models.BertMaskedLM.preprocessorA keras_hub.models.Preprocessor layer used to preprocess input.