TextClassifier

source

TextClassifier class

keras_nlp.models.TextClassifier(*args, compile=True, **kwargs)

Base class for all classification tasks.

TextClassifier tasks wrap a keras_hub.models.Backbone and a keras_hub.models.Preprocessor to create a model that can be used for sequence classification. TextClassifier tasks take an additional num_classes argument, controlling the number of predicted output classes.

To fine-tune with fit(), pass a dataset containing tuples of (x, y) labels where x is a string and y is a integer from [0, num_classes).

All TextClassifier tasks include a from_preset() constructor which can be used to load a pre-trained config and weights.

Some, but not all, classification presets include classification head weights in a task.weights.h5 file. For these presets, you can omit passing num_classes to restore the saved classification head. For all presets, if num_classes is passed as a kwarg to from_preset(), the classification head will be randomly initialized.

Example

# Load a BERT classifier with pre-trained weights.
classifier = keras_hub.models.TextClassifier.from_preset(
    "bert_base_en",
    num_classes=2,
)
# Fine-tune on IMDb movie reviews (or any dataset).
imdb_train, imdb_test = tfds.load(
    "imdb_reviews",
    split=["train", "test"],
    as_supervised=True,
    batch_size=16,
)
classifier.fit(imdb_train, validation_data=imdb_test)
# Predict two new examples.
classifier.predict(["What an amazing movie!", "A total waste of my time."])

source

from_preset method

TextClassifier.from_preset(preset, load_weights=True, **kwargs)

Instantiate a keras_hub.models.Task from a model preset.

A preset is a directory of configs, weights and other file assets used to save and load a pre-trained model. The preset can be passed as one of:

  1. a built-in preset identifier like 'bert_base_en'
  2. a Kaggle Models handle like 'kaggle://user/bert/keras/bert_base_en'
  3. a Hugging Face handle like 'hf://user/bert_base_en'
  4. a path to a local preset directory like './bert_base_en'

For any Task subclass, you can run cls.presets.keys() to list all built-in presets available on the class.

This constructor can be called in one of two ways. Either from a task specific base class like keras_hub.models.CausalLM.from_preset(), or from a model class like keras_hub.models.BertTextClassifier.from_preset(). If calling from the a base class, the subclass of the returning object will be inferred from the config in the preset directory.

Arguments

  • preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
  • load_weights: bool. If True, saved weights will be loaded into the model architecture. If False, all weights will be randomly initialized.

Examples

# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
    "gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
    "bert_base_en",
    num_classes=2,
)

source

compile method

TextClassifier.compile(optimizer="auto", loss="auto", metrics="auto", **kwargs)

Configures the TextClassifier task for training.

The TextClassifier task extends the default compilation signature of keras.Model.compile with defaults for optimizer, loss, and metrics. To override these defaults, pass any value to these arguments during compilation.

Arguments

  • optimizer: "auto", an optimizer name, or a keras.Optimizer instance. Defaults to "auto", which uses the default optimizer for the given model and task. See keras.Model.compile and keras.optimizers for more info on possible optimizer values.
  • loss: "auto", a loss name, or a keras.losses.Loss instance. Defaults to "auto", where a keras.losses.SparseCategoricalCrossentropy loss will be applied for the classification task. See keras.Model.compile and keras.losses for more info on possible loss values.
  • metrics: "auto", or a list of metrics to be evaluated by the model during training and testing. Defaults to "auto", where a keras.metrics.SparseCategoricalAccuracy will be applied to track the accuracy of the model during training. See keras.Model.compile and keras.metrics for more info on possible metrics values.
  • **kwargs: See keras.Model.compile for a full list of arguments supported by the compile method.

source

save_to_preset method

TextClassifier.save_to_preset(preset_dir)

Save task to a preset directory.

Arguments

  • preset_dir: The path to the local model preset directory.

preprocessor property

keras_nlp.models.TextClassifier.preprocessor

A keras_hub.models.Preprocessor layer used to preprocess input.

backbone property

keras_nlp.models.TextClassifier.backbone

A keras_hub.models.Backbone model with the core architecture.