Task
- 원본 링크 : https://keras.io/api/keras_nlp/base_classes/task/
- 최종 확인 : 2024-11-26
Task class
keras_nlp.models.Task(*args, compile=True, **kwargs)Base class for all Task models.
A Task wraps a keras_hub.models.Backbone and
a keras_hub.models.Preprocessor to create a model that can be directly
used for training, fine-tuning, and prediction for a given text problem.
All Task models have backbone and preprocessor properties. By
default fit(), predict() and evaluate() will preprocess all inputs
automatically. To preprocess inputs separately or with a custom function,
you can set task.preprocessor = None, which disable any automatic
preprocessing on inputs.
All Task classes include a from_preset() constructor which can be used
to load a pre-trained config and weights. Calling from_preset() on a task
will automatically instantiate a keras_hub.models.Backbone and
keras_hub.models.Preprocessor.
Arguments
- compile: boolean, defaults to
True. IfTruewill compile the model with default parameters on construction. Model can still be recompiled with a new loss, optimizer and metrics before training.
from_preset method
Task.from_preset(preset, load_weights=True, **kwargs)Instantiate a keras_hub.models.Task from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
- a built-in preset identifier like
'bert_base_en' - a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en' - a Hugging Face handle like
'hf://user/bert_base_en' - a path to a local preset directory like
'./bert_base_en'
For any Task subclass, you can run cls.presets.keys() to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset(), or
from a model class like keras_hub.models.BertTextClassifier.from_preset().
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
- load_weights: bool. If
True, saved weights will be loaded into the model architecture. IfFalse, all weights will be randomly initialized.
Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)save_to_preset method
Task.save_to_preset(preset_dir)Save task to a preset directory.
Arguments
- preset_dir: The path to the local model preset directory.
preprocessor property
keras_nlp.models.Task.preprocessorA keras_hub.models.Preprocessor layer used to preprocess input.
backbone property
keras_nlp.models.Task.backboneA keras_hub.models.Backbone model with the core architecture.