MaskedLM
- 원본 링크 : https://keras.io/api/keras_nlp/base_classes/masked_lm/
- 최종 확인 : 2024-11-26
MaskedLM class
keras_nlp.models.MaskedLM()Base class for masked language modeling tasks.
MaskedLM tasks wrap a keras_hub.models.Backbone and
a keras_hub.models.Preprocessor to create a model that can be used for
unsupervised fine-tuning with a masked language modeling loss.
When calling fit(), all input will be tokenized, and random tokens in
the input sequence will be masked. These positions of these masked tokens
will be fed as an additional model input, and the original value of the
tokens predicted by the model outputs.
All MaskedLM tasks include a from_preset() constructor which can be used
to load a pre-trained config and weights.
Example
# Load a Bert MaskedLM with pre-trained weights.
masked_lm = keras_hub.models.MaskedLM.from_preset(
"bert_base_en",
)
masked_lm.fit(train_ds)from_preset method
MaskedLM.from_preset(preset, load_weights=True, **kwargs)Instantiate a keras_hub.models.Task from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
- a built-in preset identifier like
'bert_base_en' - a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en' - a Hugging Face handle like
'hf://user/bert_base_en' - a path to a local preset directory like
'./bert_base_en'
For any Task subclass, you can run cls.presets.keys() to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset(), or
from a model class like keras_hub.models.BertTextClassifier.from_preset().
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
- load_weights: bool. If
True, saved weights will be loaded into the model architecture. IfFalse, all weights will be randomly initialized.
Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)compile method
MaskedLM.compile(optimizer="auto", loss="auto", weighted_metrics="auto", **kwargs)Configures the MaskedLM task for training.
The MaskedLM task extends the default compilation signature of
keras.Model.compile with defaults for optimizer, loss, and
weighted_metrics. To override these defaults, pass any value
to these arguments during compilation.
Note that because training inputs include padded tokens which are
excluded from the loss, it is almost always a good idea to compile with
weighted_metrics and not metrics.
Arguments
- optimizer:
"auto", an optimizer name, or akeras.Optimizerinstance. Defaults to"auto", which uses the default optimizer for the given model and task. Seekeras.Model.compileandkeras.optimizersfor more info on possibleoptimizervalues. - loss:
"auto", a loss name, or akeras.losses.Lossinstance. Defaults to"auto", where akeras.losses.SparseCategoricalCrossentropyloss will be applied for the token classificationMaskedLMtask. Seekeras.Model.compileandkeras.lossesfor more info on possiblelossvalues. - weighted_metrics:
"auto", or a list of metrics to be evaluated by the model during training and testing. Defaults to"auto", where akeras.metrics.SparseCategoricalAccuracywill be applied to track the accuracy of the model at guessing masked token values. Seekeras.Model.compileandkeras.metricsfor more info on possibleweighted_metricsvalues. - **kwargs: See
keras.Model.compilefor a full list of arguments supported by the compile method.
save_to_preset method
MaskedLM.save_to_preset(preset_dir)Save task to a preset directory.
Arguments
- preset_dir: The path to the local model preset directory.
preprocessor property
keras_nlp.models.MaskedLM.preprocessorA keras_hub.models.Preprocessor layer used to preprocess input.
backbone property
keras_nlp.models.MaskedLM.backboneA keras_hub.models.Backbone model with the core architecture.