MaskedLM
- 원본 링크 : https://keras.io/api/keras_nlp/base_classes/masked_lm/
- 최종 확인 : 2024-11-26
MaskedLM
class
keras_nlp.models.MaskedLM()
Base class for masked language modeling tasks.
MaskedLM
tasks wrap a keras_hub.models.Backbone
and
a keras_hub.models.Preprocessor
to create a model that can be used for
unsupervised fine-tuning with a masked language modeling loss.
When calling fit()
, all input will be tokenized, and random tokens in
the input sequence will be masked. These positions of these masked tokens
will be fed as an additional model input, and the original value of the
tokens predicted by the model outputs.
All MaskedLM
tasks include a from_preset()
constructor which can be used
to load a pre-trained config and weights.
Example
# Load a Bert MaskedLM with pre-trained weights.
masked_lm = keras_hub.models.MaskedLM.from_preset(
"bert_base_en",
)
masked_lm.fit(train_ds)
from_preset
method
MaskedLM.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Task
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
- a built-in preset identifier like
'bert_base_en'
- a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en'
- a Hugging Face handle like
'hf://user/bert_base_en'
- a path to a local preset directory like
'./bert_base_en'
For any Task
subclass, you can run cls.presets.keys()
to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset()
, or
from a model class like keras_hub.models.BertTextClassifier.from_preset()
.
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
- load_weights: bool. If
True
, saved weights will be loaded into the model architecture. IfFalse
, all weights will be randomly initialized.
Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
compile
method
MaskedLM.compile(optimizer="auto", loss="auto", weighted_metrics="auto", **kwargs)
Configures the MaskedLM
task for training.
The MaskedLM
task extends the default compilation signature of
keras.Model.compile
with defaults for optimizer
, loss
, and
weighted_metrics
. To override these defaults, pass any value
to these arguments during compilation.
Note that because training inputs include padded tokens which are
excluded from the loss, it is almost always a good idea to compile with
weighted_metrics
and not metrics
.
Arguments
- optimizer:
"auto"
, an optimizer name, or akeras.Optimizer
instance. Defaults to"auto"
, which uses the default optimizer for the given model and task. Seekeras.Model.compile
andkeras.optimizers
for more info on possibleoptimizer
values. - loss:
"auto"
, a loss name, or akeras.losses.Loss
instance. Defaults to"auto"
, where akeras.losses.SparseCategoricalCrossentropy
loss will be applied for the token classificationMaskedLM
task. Seekeras.Model.compile
andkeras.losses
for more info on possibleloss
values. - weighted_metrics:
"auto"
, or a list of metrics to be evaluated by the model during training and testing. Defaults to"auto"
, where akeras.metrics.SparseCategoricalAccuracy
will be applied to track the accuracy of the model at guessing masked token values. Seekeras.Model.compile
andkeras.metrics
for more info on possibleweighted_metrics
values. - **kwargs: See
keras.Model.compile
for a full list of arguments supported by the compile method.
save_to_preset
method
MaskedLM.save_to_preset(preset_dir)
Save task to a preset directory.
Arguments
- preset_dir: The path to the local model preset directory.
preprocessor
property
keras_nlp.models.MaskedLM.preprocessor
A keras_hub.models.Preprocessor
layer used to preprocess input.
backbone
property
keras_nlp.models.MaskedLM.backbone
A keras_hub.models.Backbone
model with the core architecture.