XLMRobertaMaskedLM model
- 원본 링크 : https://keras.io/api/keras_hub/models/xlm_roberta/xlm_roberta_masked_lm/
- 최종 확인 : 2024-11-26
XLMRobertaMaskedLM
class
keras_hub.models.XLMRobertaMaskedLM(backbone, preprocessor=None, **kwargs)
An end-to-end XLM-RoBERTa model for the masked language modeling task.
This model will train XLM-RoBERTa on a masked language modeling task.
The model will predict labels for a number of masked tokens in the
input data. For usage of this model with pre-trained weights, see the
from_preset()
method.
This model can optionally be configured with a preprocessor
layer, in
which case inputs can be raw string features during fit()
, predict()
,
and evaluate()
. Inputs will be tokenized and dynamically masked during
training and evaluation. This is done by default when creating the model
with from_preset()
.
Disclaimer: Pre-trained models are provided on an “as is” basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available here.
Arguments
- backbone: A
keras_hub.models.XLMRobertaBackbone
instance. - preprocessor: A
keras_hub.models.XLMRobertaMaskedLMPreprocessor
orNone
. IfNone
, this model will not apply preprocessing, and inputs should be preprocessed before calling the model.
Examples
Raw string inputs and pretrained backbone.
# Create a dataset with raw string features. Labels are inferred.
features = ["The quick brown fox jumped.", "I forgot my homework."]
# Pretrained language model
# on an MLM task.
masked_lm = keras_hub.models.XLMRobertaMaskedLM.from_preset(
"xlm_roberta_base_multi",
)
masked_lm.fit(x=features, batch_size=2)
Re-compile (e.g., with a new learning rate)
.
masked_lm.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
Access backbone programmatically (e.g., to change trainable
)
.
masked_lm.backbone.trainable = False Fit again
.
masked_lm.fit(x=features, batch_size=2)
Preprocessed integer data.
Create a preprocessed dataset where 0 is the mask token
.
features = { “token_ids”: np.array([[1, 2, 0, 4, 0, 6, 7, 8]] _ 2), “padding_mask”: np.array([[1, 1, 1, 1, 1, 1, 1, 1]] _ 2), “mask_positions”: np.array([[2, 4]] * 2) } Labels are the original masked values
.
labels = [[3, 5]] * 2
masked_lm = keras_hub.models.XLMRobertaMaskedLM.from_preset( “xlm_roberta_base_multi”, preprocessor=None, )
masked_lm.fit(x=features, y=labels, batch_size=2)
---
### `from_preset` method
XLMRobertaMaskedLM.from_preset(preset, load_weights=True, **kwargs)
Instantiate a [`keras_hub.models.Task`](/keras_site/ko/docs/api/keras_hub/base_classes/task/#task-class) from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The `preset` can be passed as
one of:
1. a built-in preset identifier like `'bert_base_en'`
2. a Kaggle Models handle like `'kaggle://user/bert/keras/bert_base_en'`
3. a Hugging Face handle like `'hf://user/bert_base_en'`
4. a path to a local preset directory like `'./bert_base_en'`
For any `Task` subclass, you can run `cls.presets.keys()` to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like `keras_hub.models.CausalLM.from_preset()`, or
from a model class like `keras_hub.models.BertTextClassifier.from_preset()`.
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
**Arguments**
* **preset**: string. A built-in preset identifier, a Kaggle Models
handle, a Hugging Face handle, or a path to a local directory.
* **load\_weights**: bool. If `True`, saved weights will be loaded into
the model architecture. If `False`, all weights will be
randomly initialized.
**Examples**
causal_lm = keras_hub.models.CausalLM.from_preset( “gemma_2b_en”, )
model = keras_hub.models.TextClassifier.from_preset( “bert_base_en”, num_classes=2, )
| Preset name | Parameters | Description |
| --- | --- | --- |
| xlm\_roberta\_base\_multi | 277.45M | 12-layer XLM-RoBERTa model where case is maintained. Trained on CommonCrawl in 100 languages. |
| xlm\_roberta\_large\_multi | 558.84M | 24-layer XLM-RoBERTa model where case is maintained. Trained on CommonCrawl in 100 languages. |
---
### `backbone` property
keras_hub.models.XLMRobertaMaskedLM.backbone
A [`keras_hub.models.Backbone`](/keras_site/ko/docs/api/keras_hub/base_classes/backbone/#backbone-class) model with the core architecture.
---
### `preprocessor` property
keras_hub.models.XLMRobertaMaskedLM.preprocessor
A [`keras_hub.models.Preprocessor`](/keras_site/ko/docs/api/keras_hub/base_classes/preprocessor/#preprocessor-class) layer used to preprocess input.
---