VGGImageClassifier model
- 원본 링크 : https://keras.io/api/keras_hub/models/vgg/vgg_image_classifier/
- 최종 확인 : 2024-11-26
VGGImageClassifier class
keras_hub.models.VGGImageClassifier(
backbone,
num_classes,
preprocessor=None,
pooling="avg",
pooling_hidden_dim=4096,
activation=None,
dropout=0.0,
head_dtype=None,
**kwargs
)VGG image classification task.
VGGImageClassifier tasks wrap a keras_hub.models.VGGBackbone and
a keras_hub.models.Preprocessor to create a model that can be used for
image classification. VGGImageClassifier tasks take an additional
num_classes argument, controlling the number of predicted output classes.
To fine-tune with fit(), pass a dataset containing tuples of (x, y)
labels where x is a string and y is a integer from [0, num_classes).
Not that unlike keras_hub.model.ImageClassifier, the VGGImageClassifier
allows and defaults to pooling="flatten", when inputs are flatten and
passed through two intermediate dense layers before the final output
projection.
Arguments
- backbone: A
keras_hub.models.VGGBackboneinstance or akeras.Model. - num_classes: int. The number of classes to predict.
- preprocessor:
None, akeras_hub.models.Preprocessorinstance, akeras.Layerinstance, or a callable. IfNoneno preprocessing will be applied to the inputs. - pooling:
"flatten","avg", or"max". The type of pooling to apply on backbone output. The default is flatten to match the original VGG implementation, where backbone inputs will be flattened and passed through two dense layers with a"relu"activation. - pooling_hidden_dim: the output feature size of the pooling dense layers.
This only applies when
pooling="flatten". - activation:
None, str, or callable. The activation function to use on theDenselayer. Setactivation=Noneto return the output logits. Defaults to"softmax". - head_dtype:
None, str, orkeras.mixed_precision.DTypePolicy. The dtype to use for the classification head’s computations and weights.
Examples
Call predict() to run inference.
# Load preset and train
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
classifier = keras_hub.models.VGGImageClassifier.from_preset(
"vgg_16_imagenet"
)
classifier.predict(images)Call fit() on a single batch.
# Load preset and train
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
labels = [0, 3]
classifier = keras_hub.models.VGGImageClassifier.from_preset(
"vgg_16_imagenet"
)
classifier.fit(x=images, y=labels, batch_size=2)Call fit() with custom loss, optimizer and backbone.
classifier = keras_hub.models.VGGImageClassifier.from_preset(
"vgg_16_imagenet"
)
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
)
classifier.backbone.trainable = False
classifier.fit(x=images, y=labels, batch_size=2)Custom backbone.
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
labels = [0, 3]
model = keras_hub.models.VGGBackbone(
stackwise_num_repeats = [2, 2, 3, 3, 3],
stackwise_num_filters = [64, 128, 256, 512, 512],
image_shape = (224, 224, 3),
)
classifier = keras_hub.models.VGGImageClassifier(
backbone=backbone,
num_classes=4,
)
classifier.fit(x=images, y=labels, batch_size=2)from_preset method
VGGImageClassifier.from_preset(preset, load_weights=True, **kwargs)Instantiate a keras_hub.models.Task from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
- a built-in preset identifier like
'bert_base_en' - a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en' - a Hugging Face handle like
'hf://user/bert_base_en' - a path to a local preset directory like
'./bert_base_en'
For any Task subclass, you can run cls.presets.keys() to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset(), or
from a model class like keras_hub.models.BertTextClassifier.from_preset().
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
- load_weights: bool. If
True, saved weights will be loaded into the model architecture. IfFalse, all weights will be randomly initialized.
Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)| Preset name | Parameters | Description |
|---|---|---|
| vgg_11_imagenet | 9.22M | 11-layer vgg model pre-trained on the ImageNet 1k dataset at a 224x224 resolution. |
| vgg_13_imagenet | 9.40M | 13-layer vgg model pre-trained on the ImageNet 1k dataset at a 224x224 resolution. |
| vgg_16_imagenet | 14.71M | 16-layer vgg model pre-trained on the ImageNet 1k dataset at a 224x224 resolution. |
| vgg_19_imagenet | 20.02M | 19-layer vgg model pre-trained on the ImageNet 1k dataset at a 224x224 resolution. |
backbone property
keras_hub.models.VGGImageClassifier.backboneA keras_hub.models.Backbone model with the core architecture.
preprocessor property
keras_hub.models.VGGImageClassifier.preprocessorA keras_hub.models.Preprocessor layer used to preprocess input.