PaliGemmaTokenizer
- 원본 링크 : https://keras.io/api/keras_hub/models/pali_gemma/pali_gemma_tokenizer/
- 최종 확인 : 2024-11-26
PaliGemmaTokenizer class
keras_hub.tokenizers.PaliGemmaTokenizer(proto, **kwargs)PaliGemma tokenizer layer based on SentencePiece.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.SentencePieceTokenizer. Unlike the
underlying tokenizer, it will check for all special tokens needed by
PaliGemma models and provides a from_preset() method to automatically
download a matching vocabulary for a PaliGemma preset.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor with static shape [None].
Arguments
- proto: Either a
stringpath to a SentencePiece proto file, or abytesobject with a serialized SentencePiece proto. See the SentencePiece repository for more details on the format.
Examples
# Unbatched input.
tokenizer = keras_hub.models.PaliGemmaTokenizer.from_preset(
"pali_gemma_3b_224"
)
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=8,
model_type="WORD",
pad_id=0,
bos_id=1,
eos_id=2,
unk_id=3,
pad_piece="<pad>",
bos_piece="<bos>",
eos_piece="<eos>",
unk_piece="<unk>",
)
tokenizer = keras_hub.models.PaliGemmaTokenizer(
proto=bytes_io.getvalue(),
)
tokenizer("The quick brown fox jumped.")from_preset method
PaliGemmaTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
- a built-in preset identifier like
'bert_base_en' - a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en' - a Hugging Face handle like
'hf://user/bert_base_en' - a path to a local preset directory like
'./bert_base_en'
For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
- load_weights: bool. If
True, the weights will be loaded into the model architecture. IfFalse, the weights will be randomly initialized.
Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])| Preset name | Parameters | Description |
|---|---|---|
| pali_gemma_3b_mix_224 | 2.92B | image size 224, mix fine tuned, text sequence length is 256 |
| pali_gemma_3b_mix_448 | 2.92B | image size 448, mix fine tuned, text sequence length is 512 |
| pali_gemma_3b_224 | 2.92B | image size 224, pre trained, text sequence length is 128 |
| pali_gemma_3b_448 | 2.92B | image size 448, pre trained, text sequence length is 512 |
| pali_gemma_3b_896 | 2.93B | image size 896, pre trained, text sequence length is 512 |