OPTCausalLMPreprocessor layer
- 원본 링크 : https://keras.io/api/keras_hub/models/opt/opt_causal_lm_preprocessor/
- 최종 확인 : 2024-11-26
OPTCausalLMPreprocessor
class
keras_hub.models.OPTCausalLMPreprocessor(
tokenizer, sequence_length=1024, add_start_token=True, add_end_token=True, **kwargs
)
OPT Causal LM preprocessor.
This preprocessing layer is primarily meant to be used with
keras_hub.models.OPTCausalLM
. By default, it will take in batches of
strings, and return outputs in a (x, y, sample_weight)
format, where the
y
label is the next token id in the x
sequence. For use with generation,
pass return_labels=False
in which case the output will simply be the
encoded string features.
Arguments
- tokenizer: A
keras_hub.models.OPTTokenizer
instance. - sequence_length: The length of the packed inputs.
- add_start_token: If
True
, the preprocessor will prepend the tokenizer start token to each input sequence. - add_end_token: If
True
, the preprocessor will append the tokenizer end token to each input sequence.
Call arguments
- x: A string,
tf.Tensor
or list of python strings. - y: Label data. Should always be
None
as the layer generates labels. - sample_weight: Label weights. Should always be
None
as the layer generates label weights. - sequence_length: Pass to override the configured
sequence_length
of the layer. - add_start_token: Pass to override the configured value of
add_start_token
on the layer. - add_end_token: Pass to override the configured value of
add_end_token
on the layer. - return_labels: If
True
, the output"token_ids"
will be offset by one and returned as labels. IfFalse
only features will be returned.
Examples
# Load the preprocessor from a preset.
preprocessor = keras_hub.models.OPTCausalLMPreprocessor.from_preset(
"opt_125m_en"
)
# Tokenize and pack a single sentence.
sentence = tf.constant("League of legends")
preprocessor(sentence)
# Same output.
preprocessor("League of legends")
# Tokenize a batch of sentences.
sentences = tf.constant(["Taco tuesday", "Fish taco please!"])
preprocessor(sentences)
# Same output.
preprocessor(["Taco tuesday", "Fish taco please!"])
# Map a dataset to preprocess a single sentence.
features = tf.constant(
[
"Avatar 2 is amazing!",
"Well, I am not sure.",
]
)
labels = tf.constant([1, 0])
ds = tf.data.Dataset.from_tensor_slices((features, labels))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map a dataset to preprocess unlabled sentences.
ds = tf.data.Dataset.from_tensor_slices(features)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
from_preset
method
OPTCausalLMPreprocessor.from_preset(
preset, config_file="preprocessor.json", **kwargs
)
Instantiate a keras_hub.models.Preprocessor
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
- a built-in preset identifier like
'bert_base_en'
- a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en'
- a Hugging Face handle like
'hf://user/bert_base_en'
- a path to a local preset directory like
'./bert_base_en'
For any Preprocessor
subclass, you can run cls.presets.keys()
to
list all built-in presets available on the class.
As there are usually multiple preprocessing classes for a given model,
this method should be called on a specific subclass like
keras_hub.models.BertTextClassifierPreprocessor.from_preset()
.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
Examples
# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.GemmaCausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.BertTextClassifierPreprocessor.from_preset(
"bert_base_en",
)
Preset name | Parameters | Description |
---|---|---|
opt_125m_en | 125.24M | 12-layer OPT model where case in maintained. Trained on BookCorpus, CommonCrawl, Pile, and PushShift.io corpora. |
opt_1.3b_en | 1.32B | 24-layer OPT model where case in maintained. Trained on BookCorpus, CommonCrawl, Pile, and PushShift.io corpora. |
opt_2.7b_en | 2.70B | 32-layer OPT model where case in maintained. Trained on BookCorpus, CommonCrawl, Pile, and PushShift.io corpora. |
opt_6.7b_en | 6.70B | 32-layer OPT model where case in maintained. Trained on BookCorpus, CommonCrawl, Pile, and PushShift.io corpora. |
tokenizer
property
keras_hub.models.OPTCausalLMPreprocessor.tokenizer
The tokenizer used to tokenize strings.