GemmaCausalLMPreprocessor layer

source

GemmaCausalLMPreprocessor class

keras_hub.models.GemmaCausalLMPreprocessor(
    tokenizer, sequence_length=1024, add_start_token=True, add_end_token=True, **kwargs
)

Gemma Causal LM preprocessor.

This preprocessing layer is meant for use with keras_hub.models.GemmaCausalLM. By default, it will take in batches of strings, and return outputs in a (x, y, sample_weight) format, where the y label is the next token id in the x sequence.

For use with generation, the layer also exposes two methods generate_preprocess() and generate_postprocess(). When this preprocessor is attached to a keras_hub.models.GemmaCausalLM instance, these methods will be called implicitly in generate(). They can also be called standalone (e.g. to precompute preprocessing inputs for generation in a separate process).

Arguments

  • tokenizer: A keras_hub.models.GemmaTokenizer instance.
  • sequence_length: The length of the packed inputs.
  • add_start_token: If True, the preprocessor will prepend the tokenizer start token to each input sequence.
  • add_end_token: If True, the preprocessor will append the tokenizer end token to each input sequence.

Call arguments

  • x: A string, tf.Tensor or list of python strings.
  • y: Label data. Should always be None as the layer generates labels.
  • sample_weight: Label weights. Should always be None as the layer generates label weights.
  • sequence_length: Pass to override the configured sequence_length of the layer.

Examples

# Load the preprocessor from a preset.
preprocessor = keras_hub.models.GemmaCausalLMPreprocessor.from_preset(
    "gemma_2b_en"
)
# Tokenize and pack a single sentence.
preprocessor("The quick brown fox jumped.")
# Tokenize a batch of sentences.
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
# Apply tokenization to a [`tf.data.Dataset`](https://www.tensorflow.org/api_docs/python/tf/data/Dataset).
features = tf.constant(["The quick brown fox.", "Call me Ishmael."])
ds = tf.data.Dataset.from_tensor_slices(features)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Prepare tokens for generation (no end token).
preprocessor.generate_preprocess(["The quick brown fox jumped."])
# Map generation outputs back to strings.
preprocessor.generate_postprocess({
    'token_ids': np.array([[2, 714, 4320, 8426, 25341, 32292, 235265, 0]]),
    'padding_mask': np.array([[ 1,  1,  1,  1,  1,  1,  1, 0]]),
})

source

from_preset method

GemmaCausalLMPreprocessor.from_preset(
    preset, config_file="preprocessor.json", **kwargs
)

Instantiate a keras_hub.models.Preprocessor from a model preset.

A preset is a directory of configs, weights and other file assets used to save and load a pre-trained model. The preset can be passed as one of:

  1. a built-in preset identifier like 'bert_base_en'
  2. a Kaggle Models handle like 'kaggle://user/bert/keras/bert_base_en'
  3. a Hugging Face handle like 'hf://user/bert_base_en'
  4. a path to a local preset directory like './bert_base_en'

For any Preprocessor subclass, you can run cls.presets.keys() to list all built-in presets available on the class.

As there are usually multiple preprocessing classes for a given model, this method should be called on a specific subclass like keras_hub.models.BertTextClassifierPreprocessor.from_preset().

Arguments

  • preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.

Examples

# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.GemmaCausalLMPreprocessor.from_preset(
    "gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.BertTextClassifierPreprocessor.from_preset(
    "bert_base_en",
)
Preset nameParametersDescription
gemma_2b_en2.51B2 billion parameter, 18-layer, base Gemma model.
gemma_instruct_2b_en2.51B2 billion parameter, 18-layer, instruction tuned Gemma model.
gemma_1.1_instruct_2b_en2.51B2 billion parameter, 18-layer, instruction tuned Gemma model. The 1.1 update improves model quality.
code_gemma_1.1_2b_en2.51B2 billion parameter, 18-layer, CodeGemma model. This model has been trained on a fill-in-the-middle (FIM) task for code completion. The 1.1 update improves model quality.
code_gemma_2b_en2.51B2 billion parameter, 18-layer, CodeGemma model. This model has been trained on a fill-in-the-middle (FIM) task for code completion.
gemma_7b_en8.54B7 billion parameter, 28-layer, base Gemma model.
gemma_instruct_7b_en8.54B7 billion parameter, 28-layer, instruction tuned Gemma model.
gemma_1.1_instruct_7b_en8.54B7 billion parameter, 28-layer, instruction tuned Gemma model. The 1.1 update improves model quality.
code_gemma_7b_en8.54B7 billion parameter, 28-layer, CodeGemma model. This model has been trained on a fill-in-the-middle (FIM) task for code completion.
code_gemma_instruct_7b_en8.54B7 billion parameter, 28-layer, instruction tuned CodeGemma model. This model has been trained for chat use cases related to code.
code_gemma_1.1_instruct_7b_en8.54B7 billion parameter, 28-layer, instruction tuned CodeGemma model. This model has been trained for chat use cases related to code. The 1.1 update improves model quality.
gemma2_2b_en2.61B2 billion parameter, 26-layer, base Gemma model.
gemma2_instruct_2b_en2.61B2 billion parameter, 26-layer, instruction tuned Gemma model.
gemma2_9b_en9.24B9 billion parameter, 42-layer, base Gemma model.
gemma2_instruct_9b_en9.24B9 billion parameter, 42-layer, instruction tuned Gemma model.
gemma2_27b_en27.23B27 billion parameter, 42-layer, base Gemma model.
gemma2_instruct_27b_en27.23B27 billion parameter, 42-layer, instruction tuned Gemma model.
shieldgemma_2b_en2.61B2 billion parameter, 26-layer, ShieldGemma model.
shieldgemma_9b_en9.24B9 billion parameter, 42-layer, ShieldGemma model.
shieldgemma_27b_en27.23B27 billion parameter, 42-layer, ShieldGemma model.

tokenizer property

keras_hub.models.GemmaCausalLMPreprocessor.tokenizer

The tokenizer used to tokenize strings.