CausalLMPreprocessor

source

CausalLMPreprocessor class

keras_hub.models.CausalLMPreprocessor(
    tokenizer, sequence_length=1024, add_start_token=True, add_end_token=True, **kwargs
)

Base class for causal language modeling preprocessing layers.

CausalLMPreprocessor tasks wrap a keras_hub.tokenizer.Tokenizer to create a preprocessing layer for causal language modeling tasks. It is intended to be paired with a keras.models.CausalLM task.

All CausalLMPreprocessor take inputs a single input. This can be a single string or a batch of strings. See examples below. These inputs will be tokenized and padded/truncated to a fixed sequence length.

This layer will always output a (x, y, sample_weight) tuple, where x is a dictionary with the tokenized inputs, y contains the tokens from x offset by 1, and sample_weight marks where y contains padded values. The exact contents of x will vary depending on the model being used.

a CausalLMPreprocessor contains two extra methods, generate_preprocess and generate_postprocess for use with generation. See examples below.

All CausalLMPreprocessor tasks include a from_preset() constructor which can be used to load a pre-trained config and vocabularies. You can call the from_preset() constructor directly on this base class, in which case the correct class for you model will be automatically instantiated.

Examples.

preprocessor = keras_hub.models.CausalLMPreprocessor.from_preset(
    "bert_base_en_uncased",
    sequence_length=256, # Optional.
)
# Tokenize, mask and pack a single sentence.
x = "The quick brown fox jumped."
x, y, sample_weight = preprocessor(x)
# Tokenize and pad/truncate a batch of labeled sentences.
x = ["The quick brown fox jumped.", "Call me Ishmael."]
x, y, sample_weight = preprocessor(x)
# With a [`tf.data.Dataset`](https://www.tensorflow.org/api_docs/python/tf/data/Dataset).
ds = tf.data.Dataset.from_tensor_slices(x)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Generate preprocess and postprocess.
x = preprocessor.generate_preprocess(x)  # Tokenized numeric inputs.
x = preprocessor.generate_postprocess(x)  # Detokenized string outputs.

source

from_preset method

CausalLMPreprocessor.from_preset(preset, config_file="preprocessor.json", **kwargs)

Instantiate a keras_hub.models.Preprocessor from a model preset.

A preset is a directory of configs, weights and other file assets used to save and load a pre-trained model. The preset can be passed as one of:

  1. a built-in preset identifier like 'bert_base_en'
  2. a Kaggle Models handle like 'kaggle://user/bert/keras/bert_base_en'
  3. a Hugging Face handle like 'hf://user/bert_base_en'
  4. a path to a local preset directory like './bert_base_en'

For any Preprocessor subclass, you can run cls.presets.keys() to list all built-in presets available on the class.

As there are usually multiple preprocessing classes for a given model, this method should be called on a specific subclass like keras_hub.models.BertTextClassifierPreprocessor.from_preset().

Arguments

  • preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.

Examples

# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.GemmaCausalLMPreprocessor.from_preset(
    "gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.BertTextClassifierPreprocessor.from_preset(
    "bert_base_en",
)
Preset nameParametersDescription
pali_gemma_3b_mix_2242.92Bimage size 224, mix fine tuned, text sequence length is 256
pali_gemma_3b_mix_4482.92Bimage size 448, mix fine tuned, text sequence length is 512
pali_gemma_3b_2242.92Bimage size 224, pre trained, text sequence length is 128
pali_gemma_3b_4482.92Bimage size 448, pre trained, text sequence length is 512
pali_gemma_3b_8962.93Bimage size 896, pre trained, text sequence length is 512
gemma_2b_en2.51B2 billion parameter, 18-layer, base Gemma model.
gemma_instruct_2b_en2.51B2 billion parameter, 18-layer, instruction tuned Gemma model.
gemma_1.1_instruct_2b_en2.51B2 billion parameter, 18-layer, instruction tuned Gemma model. The 1.1 update improves model quality.
code_gemma_1.1_2b_en2.51B2 billion parameter, 18-layer, CodeGemma model. This model has been trained on a fill-in-the-middle (FIM) task for code completion. The 1.1 update improves model quality.
code_gemma_2b_en2.51B2 billion parameter, 18-layer, CodeGemma model. This model has been trained on a fill-in-the-middle (FIM) task for code completion.
gemma_7b_en8.54B7 billion parameter, 28-layer, base Gemma model.
gemma_instruct_7b_en8.54B7 billion parameter, 28-layer, instruction tuned Gemma model.
gemma_1.1_instruct_7b_en8.54B7 billion parameter, 28-layer, instruction tuned Gemma model. The 1.1 update improves model quality.
code_gemma_7b_en8.54B7 billion parameter, 28-layer, CodeGemma model. This model has been trained on a fill-in-the-middle (FIM) task for code completion.
code_gemma_instruct_7b_en8.54B7 billion parameter, 28-layer, instruction tuned CodeGemma model. This model has been trained for chat use cases related to code.
code_gemma_1.1_instruct_7b_en8.54B7 billion parameter, 28-layer, instruction tuned CodeGemma model. This model has been trained for chat use cases related to code. The 1.1 update improves model quality.
gemma2_2b_en2.61B2 billion parameter, 26-layer, base Gemma model.
gemma2_instruct_2b_en2.61B2 billion parameter, 26-layer, instruction tuned Gemma model.
gemma2_9b_en9.24B9 billion parameter, 42-layer, base Gemma model.
gemma2_instruct_9b_en9.24B9 billion parameter, 42-layer, instruction tuned Gemma model.
gemma2_27b_en27.23B27 billion parameter, 42-layer, base Gemma model.
gemma2_instruct_27b_en27.23B27 billion parameter, 42-layer, instruction tuned Gemma model.
shieldgemma_2b_en2.61B2 billion parameter, 26-layer, ShieldGemma model.
shieldgemma_9b_en9.24B9 billion parameter, 42-layer, ShieldGemma model.
shieldgemma_27b_en27.23B27 billion parameter, 42-layer, ShieldGemma model.
phi3_mini_4k_instruct_en3.82B3.8 billion parameters, 32 layers, 4k context length, Phi-3 model. The model was trained using the Phi-3 datasets. This dataset includes both synthetic data and filtered publicly available website data, with an emphasis on high-quality and reasoning-dense properties.
phi3_mini_128k_instruct_en3.82B3.8 billion parameters, 32 layers, 128k context length, Phi-3 model. The model was trained using the Phi-3 datasets. This dataset includes both synthetic data and filtered publicly available website data, with an emphasis on high-quality and reasoning-dense properties.
llama2_7b_en6.74B7 billion parameter, 32-layer, base LLaMA 2 model.
llama2_7b_en_int86.74B7 billion parameter, 32-layer, base LLaMA 2 model with activation and weights quantized to int8.
llama2_instruct_7b_en6.74B7 billion parameter, 32-layer, instruction tuned LLaMA 2 model.
llama2_instruct_7b_en_int86.74B7 billion parameter, 32-layer, instruction tuned LLaMA 2 model with activation and weights quantized to int8.
vicuna_1.5_7b_en6.74B7 billion parameter, 32-layer, instruction tuned Vicuna v1.5 model.
llama3_8b_en8.03B8 billion parameter, 32-layer, base LLaMA 3 model.
llama3_8b_en_int88.03B8 billion parameter, 32-layer, base LLaMA 3 model with activation and weights quantized to int8.
llama3_instruct_8b_en8.03B8 billion parameter, 32-layer, instruction tuned LLaMA 3 model.
llama3_instruct_8b_en_int88.03B8 billion parameter, 32-layer, instruction tuned LLaMA 3 model with activation and weights quantized to int8.
mistral_7b_en7.24BMistral 7B base model
mistral_instruct_7b_en7.24BMistral 7B instruct model
mistral_0.2_instruct_7b_en7.24BMistral 7B instruct Version 0.2 model
falcon_refinedweb_1b_en1.31B24-layer Falcon model (Falcon with 1B parameters), trained on 350B tokens of RefinedWeb dataset.
opt_125m_en125.24M12-layer OPT model where case in maintained. Trained on BookCorpus, CommonCrawl, Pile, and PushShift.io corpora.
opt_1.3b_en1.32B24-layer OPT model where case in maintained. Trained on BookCorpus, CommonCrawl, Pile, and PushShift.io corpora.
opt_2.7b_en2.70B32-layer OPT model where case in maintained. Trained on BookCorpus, CommonCrawl, Pile, and PushShift.io corpora.
opt_6.7b_en6.70B32-layer OPT model where case in maintained. Trained on BookCorpus, CommonCrawl, Pile, and PushShift.io corpora.
bloom_560m_multi559.21M24-layer Bloom model with hidden dimension of 1024. trained on 45 natural languages and 12 programming languages.
bloom_1.1b_multi1.07B24-layer Bloom model with hidden dimension of 1536. trained on 45 natural languages and 12 programming languages.
bloom_1.7b_multi1.72B24-layer Bloom model with hidden dimension of 2048. trained on 45 natural languages and 12 programming languages.
bloom_3b_multi3.00B30-layer Bloom model with hidden dimension of 2560. trained on 45 natural languages and 12 programming languages.
bloomz_560m_multi559.21M24-layer Bloom model with hidden dimension of 1024. finetuned on crosslingual task mixture (xP3) dataset.
bloomz_1.1b_multi1.07B24-layer Bloom model with hidden dimension of 1536. finetuned on crosslingual task mixture (xP3) dataset.
bloomz_1.7b_multi1.72B24-layer Bloom model with hidden dimension of 2048. finetuned on crosslingual task mixture (xP3) dataset.
bloomz_3b_multi3.00B30-layer Bloom model with hidden dimension of 2560. finetuned on crosslingual task mixture (xP3) dataset.
gpt2_base_en124.44M12-layer GPT-2 model where case is maintained. Trained on WebText.
gpt2_medium_en354.82M24-layer GPT-2 model where case is maintained. Trained on WebText.
gpt2_large_en774.03M36-layer GPT-2 model where case is maintained. Trained on WebText.
gpt2_extra_large_en1.56B48-layer GPT-2 model where case is maintained. Trained on WebText.
gpt2_base_en_cnn_dailymail124.44M12-layer GPT-2 model where case is maintained. Finetuned on the CNN/DailyMail summarization dataset.

source

save_to_preset method

CausalLMPreprocessor.save_to_preset(preset_dir)

Save preprocessor to a preset directory.

Arguments

  • preset_dir: The path to the local model preset directory.

tokenizer property

keras_hub.models.CausalLMPreprocessor.tokenizer

The tokenizer used to tokenize strings.