The RetinaNet model
- 원본 링크 : https://keras.io/api/keras_cv/models/tasks/retinanet/
- 최종 확인 : 2024-11-25
RetinaNet
class
keras_cv.models.RetinaNet(
backbone,
num_classes,
bounding_box_format,
anchor_generator=None,
label_encoder=None,
prediction_decoder=None,
feature_pyramid=None,
classification_head=None,
box_head=None,
**kwargs
)
A Keras model implementing the RetinaNet meta-architecture.
Implements the RetinaNet architecture for object detection. The constructor
requires num_classes
, bounding_box_format
, and a backbone. Optionally,
a custom label encoder, and prediction decoder may be provided.
Example
images = np.ones((1, 512, 512, 3))
labels = {
"boxes": tf.cast([
[
[0, 0, 100, 100],
[100, 100, 200, 200],
[300, 300, 100, 100],
]
], dtype=tf.float32),
"classes": tf.cast([[1, 1, 1]], dtype=tf.float32),
}
model = keras_cv.models.RetinaNet(
num_classes=20,
bounding_box_format="xywh",
backbone=keras_cv.models.ResNet50Backbone.from_preset(
"resnet50_imagenet"
)
)
# Evaluate model without box decoding and NMS
model(images)
# Prediction with box decoding and NMS
model.predict(images)
# Train model
model.compile(
classification_loss='focal',
box_loss='smoothl1',
optimizer=keras.optimizers.SGD(global_clipnorm=10.0),
jit_compile=False,
)
model.fit(images, labels)
Arguments
- num_classes: the number of classes in your dataset excluding the background class. Classes should be represented by integers in the range [0, num_classes).
- bounding_box_format: The format of bounding boxes of input dataset. Refer to the keras.io docs for more details on supported bounding box formats.
- backbone:
keras.Model
. If the defaultfeature_pyramid
is used, must implement thepyramid_level_inputs
property with keys “P3”, “P4”, and “P5” and layer names as values. A somewhat sensible backbone to use in many cases is the:keras_cv.models.ResNetBackbone.from_preset("resnet50_imagenet")
- anchor_generator: (Optional) a
keras_cv.layers.AnchorGenerator
. If provided, the anchor generator will be passed to both thelabel_encoder
and theprediction_decoder
. Only to be used when bothlabel_encoder
andprediction_decoder
are bothNone
. Defaults to an anchor generator with the parameterization:strides=[2**i for i in range(3, 8)]
,scales=[2**x for x in [0, 1 / 3, 2 / 3]]
,sizes=[32.0, 64.0, 128.0, 256.0, 512.0]
, andaspect_ratios=[0.5, 1.0, 2.0]
. - label_encoder: (Optional) a keras.Layer that accepts an image Tensor, a
bounding box Tensor and a bounding box class Tensor to its
call()
method, and returns RetinaNet training targets. By default, a KerasCV standardRetinaNetLabelEncoder
is created and used. Results of this object’scall()
method are passed to theloss
object forbox_loss
andclassification_loss
they_true
argument. - prediction_decoder: (Optional) A
keras.layers.Layer
that is responsible for transforming RetinaNet predictions into usable bounding box Tensors. If not provided, a default is provided. The defaultprediction_decoder
layer is akeras_cv.layers.MultiClassNonMaxSuppression
layer, which uses a Non-Max Suppression for box pruning. - feature_pyramid: (Optional) A
keras.layers.Layer
that produces a list of 4D feature maps (batch dimension included) when called on the pyramid-level outputs of thebackbone
. If not provided, the reference implementation from the paper will be used. - classification_head: (Optional) A
keras.Layer
that performs classification of the bounding boxes. If not provided, a simple ConvNet with 3 layers will be used. - box_head: (Optional) A
keras.Layer
that performs regression of the bounding boxes. If not provided, a simple ConvNet with 3 layers will be used.
from_preset
method
RetinaNet.from_preset()
Instantiate RetinaNet model from preset config and weights.
Arguments
- preset: string. Must be one of “resnet18”, “resnet34”, “resnet50”, “resnet101”, “resnet152”, “resnet18_v2”, “resnet34_v2”, “resnet50_v2”, “resnet101_v2”, “resnet152_v2”, “mobilenet_v3_small”, “mobilenet_v3_large”, “csp_darknet_tiny”, “csp_darknet_s”, “csp_darknet_m”, “csp_darknet_l”, “csp_darknet_xl”, “efficientnetv1_b0”, “efficientnetv1_b1”, “efficientnetv1_b2”, “efficientnetv1_b3”, “efficientnetv1_b4”, “efficientnetv1_b5”, “efficientnetv1_b6”, “efficientnetv1_b7”, “efficientnetv2_s”, “efficientnetv2_m”, “efficientnetv2_l”, “efficientnetv2_b0”, “efficientnetv2_b1”, “efficientnetv2_b2”, “efficientnetv2_b3”, “densenet121”, “densenet169”, “densenet201”, “efficientnetlite_b0”, “efficientnetlite_b1”, “efficientnetlite_b2”, “efficientnetlite_b3”, “efficientnetlite_b4”, “yolo_v8_xs_backbone”, “yolo_v8_s_backbone”, “yolo_v8_m_backbone”, “yolo_v8_l_backbone”, “yolo_v8_xl_backbone”, “vitdet_base”, “vitdet_large”, “vitdet_huge”, “videoswin_tiny”, “videoswin_small”, “videoswin_base”, “resnet50_imagenet”, “resnet50_v2_imagenet”, “mobilenet_v3_large_imagenet”, “mobilenet_v3_small_imagenet”, “csp_darknet_tiny_imagenet”, “csp_darknet_l_imagenet”, “efficientnetv2_s_imagenet”, “efficientnetv2_b0_imagenet”, “efficientnetv2_b1_imagenet”, “efficientnetv2_b2_imagenet”, “densenet121_imagenet”, “densenet169_imagenet”, “densenet201_imagenet”, “yolo_v8_xs_backbone_coco”, “yolo_v8_s_backbone_coco”, “yolo_v8_m_backbone_coco”, “yolo_v8_l_backbone_coco”, “yolo_v8_xl_backbone_coco”, “vitdet_base_sa1b”, “vitdet_large_sa1b”, “vitdet_huge_sa1b”, “videoswin_tiny_kinetics400”, “videoswin_small_kinetics400”, “videoswin_base_kinetics400”, “videoswin_base_kinetics400_imagenet22k”, “videoswin_base_kinetics600_imagenet22k”, “videoswin_base_something_something_v2”, “retinanet_resnet50_pascalvoc”. If looking for a preset with pretrained weights, choose one of “resnet50_imagenet”, “resnet50_v2_imagenet”, “mobilenet_v3_large_imagenet”, “mobilenet_v3_small_imagenet”, “csp_darknet_tiny_imagenet”, “csp_darknet_l_imagenet”, “efficientnetv2_s_imagenet”, “efficientnetv2_b0_imagenet”, “efficientnetv2_b1_imagenet”, “efficientnetv2_b2_imagenet”, “densenet121_imagenet”, “densenet169_imagenet”, “densenet201_imagenet”, “yolo_v8_xs_backbone_coco”, “yolo_v8_s_backbone_coco”, “yolo_v8_m_backbone_coco”, “yolo_v8_l_backbone_coco”, “yolo_v8_xl_backbone_coco”, “vitdet_base_sa1b”, “vitdet_large_sa1b”, “vitdet_huge_sa1b”, “videoswin_tiny_kinetics400”, “videoswin_small_kinetics400”, “videoswin_base_kinetics400”, “videoswin_base_kinetics400_imagenet22k”, “videoswin_base_kinetics600_imagenet22k”, “videoswin_base_something_something_v2”, “retinanet_resnet50_pascalvoc”.
- load_weights: Whether to load pre-trained weights into model.
Defaults to
None
, which follows whether the preset has pretrained weights available. - input_shape : input shape that will be passed to backbone
initialization, Defaults to
None
.IfNone
, the preset value will be used.
Example
# Load architecture and weights from preset
model = keras_cv.models.RetinaNet.from_preset(
"resnet50_imagenet",
)
# Load randomly initialized model from preset architecture with weights
model = keras_cv.models.RetinaNet.from_preset(
"resnet50_imagenet",
load_weights=False,
Preset name | Parameters | Description |
---|---|---|
retinanet_resnet50_pascalvoc | 35.60M | RetinaNet with a ResNet50 v1 backbone. Trained on PascalVOC 2012 object detection task, which consists of 20 classes. This model achieves a final MaP of 0.33 on the evaluation set. |
PredictionHead
class
keras_cv.models.retinanet.PredictionHead(
output_filters, bias_initializer, num_conv_layers=3, **kwargs
)
The class/box predictions head.
Arguments
- output_filters: Number of convolution filters in the final layer.
- bias_initializer: Bias Initializer for the final convolution layer.
Returns
A function representing either the classification
or the box regression head depending on output_filters
.