Tailor the search space

Author: Luca Invernizzi, James Long, Francois Chollet, Tom O’Malley, Haifeng Jin
Date created: 2019/05/31
Last modified: 2021/10/27
Description: Tune a subset of the hyperparameters without changing the hypermodel.

!pip install keras-tuner -q

In this guide, we will show how to tailor the search space without changing the HyperModel code directly. For example, you can only tune some of the hyperparameters and keep the rest fixed, or you can override the compile arguments, like optimizer, loss, and metrics.

The default value of a hyperparameter

Before we tailor the search space, it is important to know that every hyperparameter has a default value. This default value is used as the hyperparameter value when not tuning it during our tailoring the search space.

Whenever you register a hyperparameter, you can use the default argument to specify a default value:

hp.Int("units", min_value=32, max_value=128, step=32, default=64)

If you don’t, hyperparameters always have a default default (for Int, it is equal to min_value).

In the following model-building function, we specified the default value for the units hyperparameter as 64.

import keras
from keras import layers
import keras_tuner
import numpy as np


def build_model(hp):
    model = keras.Sequential()
    model.add(layers.Flatten())
    model.add(
        layers.Dense(
            units=hp.Int("units", min_value=32, max_value=128, step=32, default=64)
        )
    )
    if hp.Boolean("dropout"):
        model.add(layers.Dropout(rate=0.25))
    model.add(layers.Dense(units=10, activation="softmax"))
    model.compile(
        optimizer=keras.optimizers.Adam(
            learning_rate=hp.Choice("learning_rate", values=[1e-2, 1e-3, 1e-4])
        ),
        loss="sparse_categorical_crossentropy",
        metrics=["accuracy"],
    )
    return model

We will reuse this search space in the rest of the tutorial by overriding the hyperparameters without defining a new search space.

Search a few and fix the rest

If you have an existing hypermodel, and you want to search over only a few hyperparameters, and keep the rest fixed, you don’t have to change the code in the model-building function or the HyperModel. You can pass a HyperParameters to the hyperparameters argument to the tuner constructor with all the hyperparameters you want to tune. Specify tune_new_entries=False to prevent it from tuning other hyperparameters, the default value of which would be used.

In the following example, we only tune the learning_rate hyperparameter, and changed its type and value ranges.

hp = keras_tuner.HyperParameters()

# This will override the `learning_rate` parameter with your
# own selection of choices
hp.Float("learning_rate", min_value=1e-4, max_value=1e-2, sampling="log")

tuner = keras_tuner.RandomSearch(
    hypermodel=build_model,
    hyperparameters=hp,
    # Prevents unlisted parameters from being tuned
    tune_new_entries=False,
    objective="val_accuracy",
    max_trials=3,
    overwrite=True,
    directory="my_dir",
    project_name="search_a_few",
)

# Generate random data
x_train = np.random.rand(100, 28, 28, 1)
y_train = np.random.randint(0, 10, (100, 1))
x_val = np.random.rand(20, 28, 28, 1)
y_val = np.random.randint(0, 10, (20, 1))

# Run the search
tuner.search(x_train, y_train, epochs=1, validation_data=(x_val, y_val))
Result
Trial 3 Complete [00h 00m 01s]
val_accuracy: 0.20000000298023224
Best val_accuracy So Far: 0.25
Total elapsed time: 00h 00m 03s

If you summarize the search space, you will see only one hyperparameter.

tuner.search_space_summary()
Result
Search space summary
Default search space size: 1
learning_rate (Float)
{'default': 0.0001, 'conditions': [], 'min_value': 0.0001, 'max_value': 0.01, 'step': None, 'sampling': 'log'}

Fix a few and tune the rest

In the example above we showed how to tune only a few hyperparameters and keep the rest fixed. You can also do the reverse: only fix a few hyperparameters and tune all the rest.

In the following example, we fixed the value of the learning_rate hyperparameter. Pass a hyperparameters argument with a Fixed entry (or any number of Fixed entries). Also remember to specify tune_new_entries=True, which allows us to tune the rest of the hyperparameters.

hp = keras_tuner.HyperParameters()
hp.Fixed("learning_rate", value=1e-4)

tuner = keras_tuner.RandomSearch(
    build_model,
    hyperparameters=hp,
    tune_new_entries=True,
    objective="val_accuracy",
    max_trials=3,
    overwrite=True,
    directory="my_dir",
    project_name="fix_a_few",
)

tuner.search(x_train, y_train, epochs=1, validation_data=(x_val, y_val))
Result
Trial 3 Complete [00h 00m 01s]
val_accuracy: 0.15000000596046448
Best val_accuracy So Far: 0.15000000596046448
Total elapsed time: 00h 00m 03s

If you summarize the search space, you will see the learning_rate is marked as fixed, and the rest of the hyperparameters are being tuned.

tuner.search_space_summary()
Result
Search space summary
Default search space size: 3
learning_rate (Fixed)
{'conditions': [], 'value': 0.0001}
units (Int)
{'default': 64, 'conditions': [], 'min_value': 32, 'max_value': 128, 'step': 32, 'sampling': 'linear'}
dropout (Boolean)
{'default': False, 'conditions': []}

Overriding compilation arguments

If you have a hypermodel for which you want to change the existing optimizer, loss, or metrics, you can do so by passing these arguments to the tuner constructor:

tuner = keras_tuner.RandomSearch(
    build_model,
    optimizer=keras.optimizers.Adam(1e-3),
    loss="mse",
    metrics=[
        "sparse_categorical_crossentropy",
    ],
    objective="val_loss",
    max_trials=3,
    overwrite=True,
    directory="my_dir",
    project_name="override_compile",
)

tuner.search(x_train, y_train, epochs=1, validation_data=(x_val, y_val))
Result
Trial 3 Complete [00h 00m 01s]
val_loss: 29.39796257019043
Best val_loss So Far: 29.39630699157715
Total elapsed time: 00h 00m 04s

If you get the best model, you can see the loss function has changed to MSE.

tuner.get_best_models()[0].loss
Result
/usr/local/python/3.10.13/lib/python3.10/site-packages/keras/src/saving/saving_lib.py:388: UserWarning: Skipping variable loading for optimizer 'adam', because it has 2 variables whereas the saved optimizer has 10 variables.
  trackable.load_own_variables(weights_store.get(inner_path))

'mse'

Tailor the search space of pre-build HyperModels

You can also use these techniques with the pre-build models in KerasTuner, like HyperResNet or HyperXception. However, to see what hyperparameters are in these pre-build HyperModels, you will have to read the source code.

In the following example, we only tune the learning_rate of HyperXception and fixed all the rest of the hyperparameters. Because the default loss of HyperXception is categorical_crossentropy, which expect the labels to be one-hot encoded, which doesn’t match our raw integer label data, we need to change it by overriding the loss in the compile args to sparse_categorical_crossentropy.

hypermodel = keras_tuner.applications.HyperXception(input_shape=(28, 28, 1), classes=10)

hp = keras_tuner.HyperParameters()

# This will override the `learning_rate` parameter with your
# own selection of choices
hp.Choice("learning_rate", values=[1e-2, 1e-3, 1e-4])

tuner = keras_tuner.RandomSearch(
    hypermodel,
    hyperparameters=hp,
    # Prevents unlisted parameters from being tuned
    tune_new_entries=False,
    # Override the loss.
    loss="sparse_categorical_crossentropy",
    metrics=["accuracy"],
    objective="val_accuracy",
    max_trials=3,
    overwrite=True,
    directory="my_dir",
    project_name="helloworld",
)

# Run the search
tuner.search(x_train, y_train, epochs=1, validation_data=(x_val, y_val))
tuner.search_space_summary()
Result
Trial 3 Complete [00h 00m 19s]
val_accuracy: 0.15000000596046448
Best val_accuracy So Far: 0.20000000298023224
Total elapsed time: 00h 00m 58s
Search space summary
Default search space size: 1
learning_rate (Choice)
{'default': 0.01, 'conditions': [], 'values': [0.01, 0.001, 0.0001], 'ordered': True}