Handling failed trials in KerasTuner
- Original Link : https://keras.io/guides/keras_tuner/failed_trials/
- Last Checked at : 2024-11-19
Author: Haifeng Jin
Date created: 2023/02/28
Last modified: 2023/02/28
Description: The basics of fault tolerance configurations in KerasTuner.
Introduction
A KerasTuner program may take a long time to run since each model may take a long time to train. We do not want the program to fail just because some trials failed randomly.
In this guide, we will show how to handle the failed trials in KerasTuner, including:
- How to tolerate the failed trials during the search
- How to mark a trial as failed during building and evaluating the model
- How to terminate the search by raising a
FatalError
Setup
!pip install keras-tuner -q
import keras
from keras import layers
import keras_tuner
import numpy as np
Tolerate failed trials
We will use the max_retries_per_trial
and max_consecutive_failed_trials
arguments when initializing the tuners.
max_retries_per_trial
controls the maximum number of retries to run if a trial keeps failing. For example, if it is set to 3, the trial may run 4 times (1 failed run + 3 failed retries) before it is finally marked as failed. The default value of max_retries_per_trial
is 0.
max_consecutive_failed_trials
controls how many consecutive failed trials (failed trial here refers to a trial that failed all of its retries) occur before terminating the search. For example, if it is set to 3 and Trial 2, Trial 3, and Trial 4 all failed, the search would be terminated. However, if it is set to 3 and only Trial 2, Trial 3, Trial 5, and Trial 6 fail, the search would not be terminated since the failed trials are not consecutive. The default value of max_consecutive_failed_trials
is 3.
The following code shows how these two arguments work in action.
- We define a search space with 2 hyperparameters for the number of units in the 2 dense layers.
- When their product is larger than 800, we raise a
ValueError
for the model too large.
def build_model(hp):
# Define the 2 hyperparameters for the units in dense layers
units_1 = hp.Int("units_1", 10, 40, step=10)
units_2 = hp.Int("units_2", 10, 30, step=10)
# Define the model
model = keras.Sequential(
[
layers.Dense(units=units_1, input_shape=(20,)),
layers.Dense(units=units_2),
layers.Dense(units=1),
]
)
model.compile(loss="mse")
# Raise an error when the model is too large
num_params = model.count_params()
if num_params > 1200:
raise ValueError(f"Model too large! It contains {num_params} params.")
return model
We set up the tuner as follows.
- We set
max_retries_per_trial=3
. - We set
max_consecutive_failed_trials=8
. - We use
GridSearch
to enumerate all hyperparameter value combinations.
tuner = keras_tuner.GridSearch(
hypermodel=build_model,
objective="val_loss",
overwrite=True,
max_retries_per_trial=3,
max_consecutive_failed_trials=8,
)
# Use random data to train the model.
tuner.search(
x=np.random.rand(100, 20),
y=np.random.rand(100, 1),
validation_data=(
np.random.rand(100, 20),
np.random.rand(100, 1),
),
epochs=10,
)
# Print the results.
tuner.results_summary()
Result
Trial 12 Complete [00h 00m 00s]
Best val_loss So Far: 0.12375041842460632
Total elapsed time: 00h 00m 08s
Results summary
Results in ./untitled_project
Showing 10 best trials
Objective(name="val_loss", direction="min")
Trial 0003 summary
Hyperparameters:
units_1: 20
units_2: 10
Score: 0.12375041842460632
Trial 0001 summary
Hyperparameters:
units_1: 10
units_2: 20
Score: 0.12741881608963013
Trial 0002 summary
Hyperparameters:
units_1: 10
units_2: 30
Score: 0.13982832431793213
Trial 0000 summary
Hyperparameters:
units_1: 10
units_2: 10
Score: 0.1433391124010086
Trial 0005 summary
Hyperparameters:
units_1: 20
units_2: 30
Score: 0.14747518301010132
Trial 0006 summary
Hyperparameters:
units_1: 30
units_2: 10
Score: 0.15092280507087708
Trial 0004 summary
Hyperparameters:
units_1: 20
units_2: 20
Score: 0.21962997317314148
Trial 0007 summary
Hyperparameters:
units_1: 30
units_2: 20
Traceback (most recent call last):
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 273, in _try_run_and_update_trial
self._run_and_update_trial(trial, *fit_args, **fit_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 238, in _run_and_update_trial
results = self.run_trial(trial, *fit_args, **fit_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 314, in run_trial
obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 232, in _build_and_fit_model
model = self._try_build(hp)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 164, in _try_build
model = self._build_hypermodel(hp)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 155, in _build_hypermodel
model = self.hypermodel.build(hp)
File "/tmp/ipykernel_21713/966577796.py", line 19, in build_model
raise ValueError(f"Model too large! It contains {num_params} params.")
ValueError: Model too large! It contains 1271 params.
Trial 0008 summary
Hyperparameters:
units_1: 30
units_2: 30
Traceback (most recent call last):
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 273, in _try_run_and_update_trial
self._run_and_update_trial(trial, *fit_args, **fit_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 238, in _run_and_update_trial
results = self.run_trial(trial, *fit_args, **fit_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 314, in run_trial
obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 232, in _build_and_fit_model
model = self._try_build(hp)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 164, in _try_build
model = self._build_hypermodel(hp)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 155, in _build_hypermodel
model = self.hypermodel.build(hp)
File "/tmp/ipykernel_21713/966577796.py", line 19, in build_model
raise ValueError(f"Model too large! It contains {num_params} params.")
ValueError: Model too large! It contains 1591 params.
Trial 0009 summary
Hyperparameters:
units_1: 40
units_2: 10
Traceback (most recent call last):
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 273, in _try_run_and_update_trial
self._run_and_update_trial(trial, *fit_args, **fit_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 238, in _run_and_update_trial
results = self.run_trial(trial, *fit_args, **fit_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 314, in run_trial
obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 232, in _build_and_fit_model
model = self._try_build(hp)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 164, in _try_build
model = self._build_hypermodel(hp)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 155, in _build_hypermodel
model = self.hypermodel.build(hp)
File "/tmp/ipykernel_21713/966577796.py", line 19, in build_model
raise ValueError(f"Model too large! It contains {num_params} params.")
ValueError: Model too large! It contains 1261 params.
Mark a trial as failed
When the model is too large, we do not need to retry it. No matter how many times we try with the same hyperparameters, it is always too large.
We can set max_retries_per_trial=0
to do it. However, it will not retry no matter what errors are raised while we may still want to retry for other unexpected errors. Is there a way to better handle this situation?
We can raise the FailedTrialError
to skip the retries. Whenever, this error is raised, the trial would not be retried. The retries will still run when other errors occur. An example is shown as follows.
def build_model(hp):
# Define the 2 hyperparameters for the units in dense layers
units_1 = hp.Int("units_1", 10, 40, step=10)
units_2 = hp.Int("units_2", 10, 30, step=10)
# Define the model
model = keras.Sequential(
[
layers.Dense(units=units_1, input_shape=(20,)),
layers.Dense(units=units_2),
layers.Dense(units=1),
]
)
model.compile(loss="mse")
# Raise an error when the model is too large
num_params = model.count_params()
if num_params > 1200:
# When this error is raised, it skips the retries.
raise keras_tuner.errors.FailedTrialError(
f"Model too large! It contains {num_params} params."
)
return model
tuner = keras_tuner.GridSearch(
hypermodel=build_model,
objective="val_loss",
overwrite=True,
max_retries_per_trial=3,
max_consecutive_failed_trials=8,
)
# Use random data to train the model.
tuner.search(
x=np.random.rand(100, 20),
y=np.random.rand(100, 1),
validation_data=(
np.random.rand(100, 20),
np.random.rand(100, 1),
),
epochs=10,
)
# Print the results.
tuner.results_summary()
Result
Trial 12 Complete [00h 00m 00s]
Best val_loss So Far: 0.08265472948551178
Total elapsed time: 00h 00m 05s
Results summary
Results in ./untitled_project
Showing 10 best trials
Objective(name="val_loss", direction="min")
Trial 0002 summary
Hyperparameters:
units_1: 10
units_2: 30
Score: 0.08265472948551178
Trial 0005 summary
Hyperparameters:
units_1: 20
units_2: 30
Score: 0.11731438338756561
Trial 0006 summary
Hyperparameters:
units_1: 30
units_2: 10
Score: 0.13600358366966248
Trial 0004 summary
Hyperparameters:
units_1: 20
units_2: 20
Score: 0.1465979516506195
Trial 0000 summary
Hyperparameters:
units_1: 10
units_2: 10
Score: 0.15967626869678497
Trial 0001 summary
Hyperparameters:
units_1: 10
units_2: 20
Score: 0.1646396517753601
Trial 0003 summary
Hyperparameters:
units_1: 20
units_2: 10
Score: 0.1696309596300125
Trial 0007 summary
Hyperparameters:
units_1: 30
units_2: 20
Traceback (most recent call last):
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 273, in _try_run_and_update_trial
self._run_and_update_trial(trial, *fit_args, **fit_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 238, in _run_and_update_trial
results = self.run_trial(trial, *fit_args, **fit_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 314, in run_trial
obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 232, in _build_and_fit_model
model = self._try_build(hp)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 164, in _try_build
model = self._build_hypermodel(hp)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 155, in _build_hypermodel
model = self.hypermodel.build(hp)
File "/tmp/ipykernel_21713/2463037569.py", line 20, in build_model
raise keras_tuner.errors.FailedTrialError(
keras_tuner.src.errors.FailedTrialError: Model too large! It contains 1271 params.
Trial 0008 summary
Hyperparameters:
units_1: 30
units_2: 30
Traceback (most recent call last):
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 273, in _try_run_and_update_trial
self._run_and_update_trial(trial, *fit_args, **fit_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 238, in _run_and_update_trial
results = self.run_trial(trial, *fit_args, **fit_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 314, in run_trial
obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 232, in _build_and_fit_model
model = self._try_build(hp)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 164, in _try_build
model = self._build_hypermodel(hp)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 155, in _build_hypermodel
model = self.hypermodel.build(hp)
File "/tmp/ipykernel_21713/2463037569.py", line 20, in build_model
raise keras_tuner.errors.FailedTrialError(
keras_tuner.src.errors.FailedTrialError: Model too large! It contains 1591 params.
Trial 0009 summary
Hyperparameters:
units_1: 40
units_2: 10
Traceback (most recent call last):
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 273, in _try_run_and_update_trial
self._run_and_update_trial(trial, *fit_args, **fit_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/base_tuner.py", line 238, in _run_and_update_trial
results = self.run_trial(trial, *fit_args, **fit_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 314, in run_trial
obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 232, in _build_and_fit_model
model = self._try_build(hp)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 164, in _try_build
model = self._build_hypermodel(hp)
File "/home/codespace/.local/lib/python3.10/site-packages/keras_tuner/src/engine/tuner.py", line 155, in _build_hypermodel
model = self.hypermodel.build(hp)
File "/tmp/ipykernel_21713/2463037569.py", line 20, in build_model
raise keras_tuner.errors.FailedTrialError(
keras_tuner.src.errors.FailedTrialError: Model too large! It contains 1261 params.
Terminate the search programmatically
When there is a bug in the code we should terminate the search immediately and fix the bug. You can terminate the search programmatically when your defined conditions are met. Raising a FatalError
(or its subclasses FatalValueError
, FatalTypeError
, or FatalRuntimeError
) will terminate the search regardless of the max_consecutive_failed_trials
argument.
Following is an example to terminate the search when the model is too large.
def build_model(hp):
# Define the 2 hyperparameters for the units in dense layers
units_1 = hp.Int("units_1", 10, 40, step=10)
units_2 = hp.Int("units_2", 10, 30, step=10)
# Define the model
model = keras.Sequential(
[
layers.Dense(units=units_1, input_shape=(20,)),
layers.Dense(units=units_2),
layers.Dense(units=1),
]
)
model.compile(loss="mse")
# Raise an error when the model is too large
num_params = model.count_params()
if num_params > 1200:
# When this error is raised, the search is terminated.
raise keras_tuner.errors.FatalError(
f"Model too large! It contains {num_params} params."
)
return model
tuner = keras_tuner.GridSearch(
hypermodel=build_model,
objective="val_loss",
overwrite=True,
max_retries_per_trial=3,
max_consecutive_failed_trials=8,
)
try:
# Use random data to train the model.
tuner.search(
x=np.random.rand(100, 20),
y=np.random.rand(100, 1),
validation_data=(
np.random.rand(100, 20),
np.random.rand(100, 1),
),
epochs=10,
)
except keras_tuner.errors.FatalError:
print("The search is terminated.")
Result
Trial 7 Complete [00h 00m 01s]
val_loss: 0.14219732582569122
Best val_loss So Far: 0.09755773097276688
Total elapsed time: 00h 00m 04s
Search: Running Trial #8
Value |Best Value So Far |Hyperparameter
30 |10 |units_1
20 |20 |units_2
The search is terminated.
Takeaways
In this guide, you learn how to handle failed trials in KerasTuner:
- Use
max_retries_per_trial
to specify the number of retries for a failed trial. - Use
max_consecutive_failed_trials
to specify the maximum consecutive failed trials to tolerate. - Raise
FailedTrialError
to directly mark a trial as failed and skip the retries. - Raise
FatalError
,FatalValueError
,FatalTypeError
,FatalRuntimeError
to terminate the search immediately.