Customizing what happens in `fit()` with PyTorch
- Original Link : https://keras.io/guides/custom_train_step_in_torch/
- Last Checked at : 2024-11-18
Author: fchollet
Date created: 2023/06/27
Last modified: 2024/08/01
Description: Overriding the training step of the Model class with PyTorch.
Introduction
When you’re doing supervised learning, you can use fit()
and everything works smoothly.
When you need to take control of every little detail, you can write your own training loop entirely from scratch.
But what if you need a custom training algorithm, but you still want to benefit from the convenient features of fit()
, such as callbacks, built-in distribution support, or step fusing?
A core principle of Keras is progressive disclosure of complexity. You should always be able to get into lower-level workflows in a gradual way. You shouldn’t fall off a cliff if the high-level functionality doesn’t exactly match your use case. You should be able to gain more control over the small details while retaining a commensurate amount of high-level convenience.
When you need to customize what fit()
does, you should override the training step function of the Model
class. This is the function that is called by fit()
for every batch of data. You will then be able to call fit()
as usual – and it will be running your own learning algorithm.
Note that this pattern does not prevent you from building models with the Functional API. You can do this whether you’re building Sequential
models, Functional API models, or subclassed models.
Let’s see how that works.
Setup
import os
# This guide can only be run with the torch backend.
os.environ["KERAS_BACKEND"] = "torch"
import torch
import keras
from keras import layers
import numpy as np
A first simple example
Let’s start from a simple example:
- We create a new class that subclasses
keras.Model
. - We just override the method
train_step(self, data)
. - We return a dictionary mapping metric names (including the loss) to their current value.
The input argument data
is what gets passed to fit as training data:
- If you pass NumPy arrays, by calling
fit(x, y, ...)
, thendata
will be the tuple(x, y)
- If you pass a
torch.utils.data.DataLoader
or atf.data.Dataset
, by callingfit(dataset, ...)
, thendata
will be what gets yielded bydataset
at each batch.
In the body of the train_step()
method, we implement a regular training update, similar to what you are already familiar with. Importantly, we compute the loss via self.compute_loss()
, which wraps the loss(es) function(s) that were passed to compile()
.
Similarly, we call metric.update_state(y, y_pred)
on metrics from self.metrics
, to update the state of the metrics that were passed in compile()
, and we query results from self.metrics
at the end to retrieve their current value.
class CustomModel(keras.Model):
def train_step(self, data):
# Unpack the data. Its structure depends on your model and
# on what you pass to `fit()`.
x, y = data
# Call torch.nn.Module.zero_grad() to clear the leftover gradients
# for the weights from the previous train step.
self.zero_grad()
# Compute loss
y_pred = self(x, training=True) # Forward pass
loss = self.compute_loss(y=y, y_pred=y_pred)
# Call torch.Tensor.backward() on the loss to compute gradients
# for the weights.
loss.backward()
trainable_weights = [v for v in self.trainable_weights]
gradients = [v.value.grad for v in trainable_weights]
# Update weights
with torch.no_grad():
self.optimizer.apply(gradients, trainable_weights)
# Update metrics (includes the metric that tracks the loss)
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(y, y_pred)
# Return a dict mapping metric names to current value
# Note that it will include the loss (tracked in self.metrics).
return {m.name: m.result() for m in self.metrics}
Let’s try this out:
# Construct and compile an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(optimizer="adam", loss="mse", metrics=["mae"])
# Just use `fit` as usual
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
model.fit(x, y, epochs=3)
Result
Epoch 1/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - mae: 0.3410 - loss: 0.1772
Epoch 2/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - mae: 0.3336 - loss: 0.1695
Epoch 3/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - mae: 0.3170 - loss: 0.1511
<keras.src.callbacks.history.History at 0x7f48a3255710>
Going lower-level
Naturally, you could just skip passing a loss function in compile()
, and instead do everything manually in train_step
. Likewise for metrics.
Here’s a lower-level example, that only uses compile()
to configure the optimizer:
- We start by creating
Metric
instances to track our loss and a MAE score (in__init__()
). - We implement a custom
train_step()
that updates the state of these metrics (by callingupdate_state()
on them), then query them (viaresult()
) to return their current average value, to be displayed by the progress bar and to be pass to any callback. - Note that we would need to call
reset_states()
on our metrics between each epoch! Otherwise callingresult()
would return an average since the start of training, whereas we usually work with per-epoch averages. Thankfully, the framework can do that for us: just list any metric you want to reset in themetrics
property of the model. The model will callreset_states()
on any object listed here at the beginning of eachfit()
epoch or at the beginning of a call toevaluate()
.
class CustomModel(keras.Model):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.loss_tracker = keras.metrics.Mean(name="loss")
self.mae_metric = keras.metrics.MeanAbsoluteError(name="mae")
self.loss_fn = keras.losses.MeanSquaredError()
def train_step(self, data):
x, y = data
# Call torch.nn.Module.zero_grad() to clear the leftover gradients
# for the weights from the previous train step.
self.zero_grad()
# Compute loss
y_pred = self(x, training=True) # Forward pass
loss = self.loss_fn(y, y_pred)
# Call torch.Tensor.backward() on the loss to compute gradients
# for the weights.
loss.backward()
trainable_weights = [v for v in self.trainable_weights]
gradients = [v.value.grad for v in trainable_weights]
# Update weights
with torch.no_grad():
self.optimizer.apply(gradients, trainable_weights)
# Compute our own metrics
self.loss_tracker.update_state(loss)
self.mae_metric.update_state(y, y_pred)
return {
"loss": self.loss_tracker.result(),
"mae": self.mae_metric.result(),
}
@property
def metrics(self):
# We list our `Metric` objects here so that `reset_states()` can be
# called automatically at the start of each epoch
# or at the start of `evaluate()`.
return [self.loss_tracker, self.mae_metric]
# Construct an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
# We don't pass a loss or metrics here.
model.compile(optimizer="adam")
# Just use `fit` as usual -- you can use callbacks, etc.
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
model.fit(x, y, epochs=5)
Result
Epoch 1/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.6173 - mae: 0.6607
Epoch 2/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.2340 - mae: 0.3883
Epoch 3/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.1922 - mae: 0.3517
Epoch 4/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.1802 - mae: 0.3411
Epoch 5/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.1862 - mae: 0.3505
<keras.src.callbacks.history.History at 0x7f48975ccbd0>
Supporting sample_weight
& class_weight
You may have noticed that our first basic example didn’t make any mention of sample weighting. If you want to support the fit()
arguments sample_weight
and class_weight
, you’d simply do the following:
- Unpack
sample_weight
from thedata
argument - Pass it to
compute_loss
&update_state
(of course, you could also just apply it manually if you don’t rely oncompile()
for losses & metrics) - That’s it.
class CustomModel(keras.Model):
def train_step(self, data):
# Unpack the data. Its structure depends on your model and
# on what you pass to `fit()`.
if len(data) == 3:
x, y, sample_weight = data
else:
sample_weight = None
x, y = data
# Call torch.nn.Module.zero_grad() to clear the leftover gradients
# for the weights from the previous train step.
self.zero_grad()
# Compute loss
y_pred = self(x, training=True) # Forward pass
loss = self.compute_loss(
y=y,
y_pred=y_pred,
sample_weight=sample_weight,
)
# Call torch.Tensor.backward() on the loss to compute gradients
# for the weights.
loss.backward()
trainable_weights = [v for v in self.trainable_weights]
gradients = [v.value.grad for v in trainable_weights]
# Update weights
with torch.no_grad():
self.optimizer.apply(gradients, trainable_weights)
# Update metrics (includes the metric that tracks the loss)
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(y, y_pred, sample_weight=sample_weight)
# Return a dict mapping metric names to current value
# Note that it will include the loss (tracked in self.metrics).
return {m.name: m.result() for m in self.metrics}
# Construct and compile an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(optimizer="adam", loss="mse", metrics=["mae"])
# You can now use sample_weight argument
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
sw = np.random.random((1000, 1))
model.fit(x, y, sample_weight=sw, epochs=3)
Result
Epoch 1/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - mae: 0.3216 - loss: 0.0827
Epoch 2/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - mae: 0.3156 - loss: 0.0803
Epoch 3/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - mae: 0.3085 - loss: 0.0760
<keras.src.callbacks.history.History at 0x7f48975d7bd0>
Providing your own evaluation step
What if you want to do the same for calls to model.evaluate()
? Then you would override test_step
in exactly the same way. Here’s what it looks like:
class CustomModel(keras.Model):
def test_step(self, data):
# Unpack the data
x, y = data
# Compute predictions
y_pred = self(x, training=False)
# Updates the metrics tracking the loss
loss = self.compute_loss(y=y, y_pred=y_pred)
# Update the metrics.
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(y, y_pred)
# Return a dict mapping metric names to current value.
# Note that it will include the loss (tracked in self.metrics).
return {m.name: m.result() for m in self.metrics}
# Construct an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(loss="mse", metrics=["mae"])
# Evaluate with our custom test_step
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
model.evaluate(x, y)
Result
1/32 [37m━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - mae: 0.8706 - loss: 0.9344
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - mae: 0.8959 - loss: 0.9952
[1.0077838897705078, 0.8984771370887756]
Wrapping up: an end-to-end GAN example
Let’s walk through an end-to-end example that leverages everything you just learned.
Let’s consider:
- A generator network meant to generate 28x28x1 images.
- A discriminator network meant to classify 28x28x1 images into two classes (“fake” and “real”).
- One optimizer for each.
- A loss function to train the discriminator.
# Create the discriminator
discriminator = keras.Sequential(
[
keras.Input(shape=(28, 28, 1)),
layers.Conv2D(64, (3, 3), strides=(2, 2), padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2D(128, (3, 3), strides=(2, 2), padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.GlobalMaxPooling2D(),
layers.Dense(1),
],
name="discriminator",
)
# Create the generator
latent_dim = 128
generator = keras.Sequential(
[
keras.Input(shape=(latent_dim,)),
# We want to generate 128 coefficients to reshape into a 7x7x128 map
layers.Dense(7 * 7 * 128),
layers.LeakyReLU(negative_slope=0.2),
layers.Reshape((7, 7, 128)),
layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2D(1, (7, 7), padding="same", activation="sigmoid"),
],
name="generator",
)
Here’s a feature-complete GAN class, overriding compile()
to use its own signature, and implementing the entire GAN algorithm in 17 lines in train_step
:
class GAN(keras.Model):
def __init__(self, discriminator, generator, latent_dim):
super().__init__()
self.discriminator = discriminator
self.generator = generator
self.latent_dim = latent_dim
self.d_loss_tracker = keras.metrics.Mean(name="d_loss")
self.g_loss_tracker = keras.metrics.Mean(name="g_loss")
self.seed_generator = keras.random.SeedGenerator(1337)
self.built = True
@property
def metrics(self):
return [self.d_loss_tracker, self.g_loss_tracker]
def compile(self, d_optimizer, g_optimizer, loss_fn):
super().compile()
self.d_optimizer = d_optimizer
self.g_optimizer = g_optimizer
self.loss_fn = loss_fn
def train_step(self, real_images):
device = "cuda" if torch.cuda.is_available() else "cpu"
if isinstance(real_images, tuple) or isinstance(real_images, list):
real_images = real_images[0]
# Sample random points in the latent space
batch_size = real_images.shape[0]
random_latent_vectors = keras.random.normal(
shape=(batch_size, self.latent_dim), seed=self.seed_generator
)
# Decode them to fake images
generated_images = self.generator(random_latent_vectors)
# Combine them with real images
real_images = torch.tensor(real_images, device=device)
combined_images = torch.concat([generated_images, real_images], axis=0)
# Assemble labels discriminating real from fake images
labels = torch.concat(
[
torch.ones((batch_size, 1), device=device),
torch.zeros((batch_size, 1), device=device),
],
axis=0,
)
# Add random noise to the labels - important trick!
labels += 0.05 * keras.random.uniform(labels.shape, seed=self.seed_generator)
# Train the discriminator
self.zero_grad()
predictions = self.discriminator(combined_images)
d_loss = self.loss_fn(labels, predictions)
d_loss.backward()
grads = [v.value.grad for v in self.discriminator.trainable_weights]
with torch.no_grad():
self.d_optimizer.apply(grads, self.discriminator.trainable_weights)
# Sample random points in the latent space
random_latent_vectors = keras.random.normal(
shape=(batch_size, self.latent_dim), seed=self.seed_generator
)
# Assemble labels that say "all real images"
misleading_labels = torch.zeros((batch_size, 1), device=device)
# Train the generator (note that we should *not* update the weights
# of the discriminator)!
self.zero_grad()
predictions = self.discriminator(self.generator(random_latent_vectors))
g_loss = self.loss_fn(misleading_labels, predictions)
grads = g_loss.backward()
grads = [v.value.grad for v in self.generator.trainable_weights]
with torch.no_grad():
self.g_optimizer.apply(grads, self.generator.trainable_weights)
# Update metrics and return their value.
self.d_loss_tracker.update_state(d_loss)
self.g_loss_tracker.update_state(g_loss)
return {
"d_loss": self.d_loss_tracker.result(),
"g_loss": self.g_loss_tracker.result(),
}
Let’s test-drive it:
# Prepare the dataset. We use both the training & test MNIST digits.
batch_size = 64
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
all_digits = np.concatenate([x_train, x_test])
all_digits = all_digits.astype("float32") / 255.0
all_digits = np.reshape(all_digits, (-1, 28, 28, 1))
# Create a TensorDataset
dataset = torch.utils.data.TensorDataset(
torch.from_numpy(all_digits), torch.from_numpy(all_digits)
)
# Create a DataLoader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
gan = GAN(discriminator=discriminator, generator=generator, latent_dim=latent_dim)
gan.compile(
d_optimizer=keras.optimizers.Adam(learning_rate=0.0003),
g_optimizer=keras.optimizers.Adam(learning_rate=0.0003),
loss_fn=keras.losses.BinaryCrossentropy(from_logits=True),
)
gan.fit(dataloader, epochs=1)
Result
1094/1094 ━━━━━━━━━━━━━━━━━━━━ 394s 360ms/step - d_loss: 0.2436 - g_loss: 4.7259
<keras.src.callbacks.history.History at 0x7f489760a490>
The ideas behind deep learning are simple, so why should their implementation be painful?