Supervised Contrastive Learning
- Original Link : https://keras.io/examples/vision/supervised-contrastive-learning/
- Last Checked at : 2024-11-21
Author: Khalid Salama
Date created: 2020/11/30
Last modified: 2020/11/30
Description: Using supervised contrastive learning for image classification.
Introduction
Supervised Contrastive Learning (Prannay Khosla et al.) is a training methodology that outperforms supervised training with crossentropy on classification tasks.
Essentially, training an image classification model with Supervised Contrastive Learning is performed in two phases:
- Training an encoder to learn to produce vector representations of input images such that representations of images in the same class will be more similar compared to representations of images in different classes.
- Training a classifier on top of the frozen encoder.
Note that this example requires TensorFlow Addons, which you can install using the following command:
pip install tensorflow-addons
Setup
import tensorflow as tf
import tensorflow_addons as tfa
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
Prepare the data
num_classes = 10
input_shape = (32, 32, 3)
# Load the train and test data splits
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
# Display shapes of train and test datasets
print(f"x_train shape: {x_train.shape} - y_train shape: {y_train.shape}")
print(f"x_test shape: {x_test.shape} - y_test shape: {y_test.shape}")
Result
x_train shape: (50000, 32, 32, 3) - y_train shape: (50000, 1)
x_test shape: (10000, 32, 32, 3) - y_test shape: (10000, 1)
Using image data augmentation
data_augmentation = keras.Sequential(
[
layers.Normalization(),
layers.RandomFlip("horizontal"),
layers.RandomRotation(0.02),
]
)
# Setting the state of the normalization layer.
data_augmentation.layers[0].adapt(x_train)
Build the encoder model
The encoder model takes the image as input and turns it into a 2048-dimensional feature vector.
def create_encoder():
resnet = keras.applications.ResNet50V2(
include_top=False, weights=None, input_shape=input_shape, pooling="avg"
)
inputs = keras.Input(shape=input_shape)
augmented = data_augmentation(inputs)
outputs = resnet(augmented)
model = keras.Model(inputs=inputs, outputs=outputs, name="cifar10-encoder")
return model
encoder = create_encoder()
encoder.summary()
learning_rate = 0.001
batch_size = 265
hidden_units = 512
projection_units = 128
num_epochs = 50
dropout_rate = 0.5
temperature = 0.05
Result
Model: "cifar10-encoder"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) [(None, 32, 32, 3)] 0
_________________________________________________________________
sequential (Sequential) (None, None, None, 3) 7
_________________________________________________________________
resnet50v2 (Functional) (None, 2048) 23564800
=================================================================
Total params: 23,564,807
Trainable params: 23,519,360
Non-trainable params: 45,447
_________________________________________________________________
Build the classification model
The classification model adds a fully-connected layer on top of the encoder, plus a softmax layer with the target classes.
def create_classifier(encoder, trainable=True):
for layer in encoder.layers:
layer.trainable = trainable
inputs = keras.Input(shape=input_shape)
features = encoder(inputs)
features = layers.Dropout(dropout_rate)(features)
features = layers.Dense(hidden_units, activation="relu")(features)
features = layers.Dropout(dropout_rate)(features)
outputs = layers.Dense(num_classes, activation="softmax")(features)
model = keras.Model(inputs=inputs, outputs=outputs, name="cifar10-classifier")
model.compile(
optimizer=keras.optimizers.Adam(learning_rate),
loss=keras.losses.SparseCategoricalCrossentropy(),
metrics=[keras.metrics.SparseCategoricalAccuracy()],
)
return model
Experiment 1: Train the baseline classification model
In this experiment, a baseline classifier is trained as usual, i.e., the encoder and the classifier parts are trained together as a single model to minimize the crossentropy loss.
encoder = create_encoder()
classifier = create_classifier(encoder)
classifier.summary()
history = classifier.fit(x=x_train, y=y_train, batch_size=batch_size, epochs=num_epochs)
accuracy = classifier.evaluate(x_test, y_test)[1]
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
Result
Model: "cifar10-classifier"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_5 (InputLayer) [(None, 32, 32, 3)] 0
_________________________________________________________________
cifar10-encoder (Functional) (None, 2048) 23564807
_________________________________________________________________
dropout (Dropout) (None, 2048) 0
_________________________________________________________________
dense (Dense) (None, 512) 1049088
_________________________________________________________________
dropout_1 (Dropout) (None, 512) 0
_________________________________________________________________
dense_1 (Dense) (None, 10) 5130
=================================================================
Total params: 24,619,025
Trainable params: 24,573,578
Non-trainable params: 45,447
_________________________________________________________________
Epoch 1/50
189/189 [==============================] - 15s 77ms/step - loss: 1.9369 - sparse_categorical_accuracy: 0.2874
Epoch 2/50
189/189 [==============================] - 11s 57ms/step - loss: 1.5133 - sparse_categorical_accuracy: 0.4505
Epoch 3/50
189/189 [==============================] - 11s 57ms/step - loss: 1.3468 - sparse_categorical_accuracy: 0.5204
Epoch 4/50
189/189 [==============================] - 11s 60ms/step - loss: 1.2159 - sparse_categorical_accuracy: 0.5733
Epoch 5/50
189/189 [==============================] - 11s 56ms/step - loss: 1.1516 - sparse_categorical_accuracy: 0.6032
Epoch 6/50
189/189 [==============================] - 11s 58ms/step - loss: 1.0769 - sparse_categorical_accuracy: 0.6254
Epoch 7/50
189/189 [==============================] - 11s 58ms/step - loss: 0.9964 - sparse_categorical_accuracy: 0.6547
Epoch 8/50
189/189 [==============================] - 10s 55ms/step - loss: 0.9563 - sparse_categorical_accuracy: 0.6703
Epoch 9/50
189/189 [==============================] - 10s 55ms/step - loss: 0.8952 - sparse_categorical_accuracy: 0.6925
Epoch 10/50
189/189 [==============================] - 11s 56ms/step - loss: 0.8986 - sparse_categorical_accuracy: 0.6922
Epoch 11/50
189/189 [==============================] - 10s 55ms/step - loss: 0.8381 - sparse_categorical_accuracy: 0.7145
Epoch 12/50
189/189 [==============================] - 10s 55ms/step - loss: 0.8513 - sparse_categorical_accuracy: 0.7086
Epoch 13/50
189/189 [==============================] - 11s 56ms/step - loss: 0.7557 - sparse_categorical_accuracy: 0.7448
Epoch 14/50
189/189 [==============================] - 11s 56ms/step - loss: 0.7168 - sparse_categorical_accuracy: 0.7548
Epoch 15/50
189/189 [==============================] - 10s 55ms/step - loss: 0.6772 - sparse_categorical_accuracy: 0.7690
Epoch 16/50
189/189 [==============================] - 11s 56ms/step - loss: 0.7587 - sparse_categorical_accuracy: 0.7416
Epoch 17/50
189/189 [==============================] - 10s 55ms/step - loss: 0.6873 - sparse_categorical_accuracy: 0.7665
Epoch 18/50
189/189 [==============================] - 11s 56ms/step - loss: 0.6418 - sparse_categorical_accuracy: 0.7804
Epoch 19/50
189/189 [==============================] - 11s 56ms/step - loss: 0.6086 - sparse_categorical_accuracy: 0.7927
Epoch 20/50
189/189 [==============================] - 10s 55ms/step - loss: 0.5903 - sparse_categorical_accuracy: 0.7978
Epoch 21/50
189/189 [==============================] - 11s 56ms/step - loss: 0.5636 - sparse_categorical_accuracy: 0.8083
Epoch 22/50
189/189 [==============================] - 11s 56ms/step - loss: 0.5527 - sparse_categorical_accuracy: 0.8123
Epoch 23/50
189/189 [==============================] - 11s 56ms/step - loss: 0.5308 - sparse_categorical_accuracy: 0.8191
Epoch 24/50
189/189 [==============================] - 10s 55ms/step - loss: 0.5282 - sparse_categorical_accuracy: 0.8223
Epoch 25/50
189/189 [==============================] - 10s 55ms/step - loss: 0.5090 - sparse_categorical_accuracy: 0.8263
Epoch 26/50
189/189 [==============================] - 10s 55ms/step - loss: 0.5497 - sparse_categorical_accuracy: 0.8181
Epoch 27/50
189/189 [==============================] - 10s 55ms/step - loss: 0.4950 - sparse_categorical_accuracy: 0.8332
Epoch 28/50
189/189 [==============================] - 11s 56ms/step - loss: 0.4727 - sparse_categorical_accuracy: 0.8391
Epoch 29/50
167/189 [=========================>....] - ETA: 1s - loss: 0.4594 - sparse_categorical_accuracy: 0.8444
Experiment 2: Use supervised contrastive learning
In this experiment, the model is trained in two phases. In the first phase, the encoder is pretrained to optimize the supervised contrastive loss, described in Prannay Khosla et al..
In the second phase, the classifier is trained using the trained encoder with its weights freezed; only the weights of fully-connected layers with the softmax are optimized.
1. Supervised contrastive learning loss function
class SupervisedContrastiveLoss(keras.losses.Loss):
def __init__(self, temperature=1, name=None):
super().__init__(name=name)
self.temperature = temperature
def __call__(self, labels, feature_vectors, sample_weight=None):
# Normalize feature vectors
feature_vectors_normalized = tf.math.l2_normalize(feature_vectors, axis=1)
# Compute logits
logits = tf.divide(
tf.matmul(
feature_vectors_normalized, tf.transpose(feature_vectors_normalized)
),
self.temperature,
)
return tfa.losses.npairs_loss(tf.squeeze(labels), logits)
def add_projection_head(encoder):
inputs = keras.Input(shape=input_shape)
features = encoder(inputs)
outputs = layers.Dense(projection_units, activation="relu")(features)
model = keras.Model(
inputs=inputs, outputs=outputs, name="cifar-encoder_with_projection-head"
)
return model
2. Pretrain the encoder
encoder = create_encoder()
encoder_with_projection_head = add_projection_head(encoder)
encoder_with_projection_head.compile(
optimizer=keras.optimizers.Adam(learning_rate),
loss=SupervisedContrastiveLoss(temperature),
)
encoder_with_projection_head.summary()
history = encoder_with_projection_head.fit(
x=x_train, y=y_train, batch_size=batch_size, epochs=num_epochs
)
Result
Model: "cifar-encoder_with_projection-head"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_8 (InputLayer) [(None, 32, 32, 3)] 0
_________________________________________________________________
cifar10-encoder (Functional) (None, 2048) 23564807
_________________________________________________________________
dense_2 (Dense) (None, 128) 262272
=================================================================
Total params: 23,827,079
Trainable params: 23,781,632
Non-trainable params: 45,447
_________________________________________________________________
Epoch 1/50
189/189 [==============================] - 11s 56ms/step - loss: 5.3730
Epoch 2/50
189/189 [==============================] - 11s 56ms/step - loss: 5.1583
Epoch 3/50
189/189 [==============================] - 10s 55ms/step - loss: 5.0368
Epoch 4/50
189/189 [==============================] - 11s 56ms/step - loss: 4.9349
Epoch 5/50
189/189 [==============================] - 10s 55ms/step - loss: 4.8262
Epoch 6/50
189/189 [==============================] - 11s 56ms/step - loss: 4.7470
Epoch 7/50
189/189 [==============================] - 11s 56ms/step - loss: 4.6835
Epoch 8/50
189/189 [==============================] - 11s 56ms/step - loss: 4.6120
Epoch 9/50
189/189 [==============================] - 11s 56ms/step - loss: 4.5608
Epoch 10/50
189/189 [==============================] - 10s 55ms/step - loss: 4.5075
Epoch 11/50
189/189 [==============================] - 11s 56ms/step - loss: 4.4674
Epoch 12/50
189/189 [==============================] - 10s 56ms/step - loss: 4.4362
Epoch 13/50
189/189 [==============================] - 11s 56ms/step - loss: 4.3899
Epoch 14/50
189/189 [==============================] - 10s 55ms/step - loss: 4.3664
Epoch 15/50
189/189 [==============================] - 11s 56ms/step - loss: 4.3188
Epoch 16/50
189/189 [==============================] - 10s 56ms/step - loss: 4.3030
Epoch 17/50
189/189 [==============================] - 11s 57ms/step - loss: 4.2725
Epoch 18/50
189/189 [==============================] - 10s 55ms/step - loss: 4.2523
Epoch 19/50
189/189 [==============================] - 11s 56ms/step - loss: 4.2100
Epoch 20/50
189/189 [==============================] - 10s 55ms/step - loss: 4.2033
Epoch 21/50
189/189 [==============================] - 11s 56ms/step - loss: 4.1741
Epoch 22/50
189/189 [==============================] - 11s 56ms/step - loss: 4.1443
Epoch 23/50
189/189 [==============================] - 11s 56ms/step - loss: 4.1350
Epoch 24/50
189/189 [==============================] - 11s 57ms/step - loss: 4.1192
Epoch 25/50
189/189 [==============================] - 11s 56ms/step - loss: 4.1002
Epoch 26/50
189/189 [==============================] - 11s 57ms/step - loss: 4.0797
Epoch 27/50
189/189 [==============================] - 11s 56ms/step - loss: 4.0547
Epoch 28/50
189/189 [==============================] - 11s 56ms/step - loss: 4.0336
Epoch 29/50
189/189 [==============================] - 11s 56ms/step - loss: 4.0299
Epoch 30/50
189/189 [==============================] - 11s 56ms/step - loss: 4.0031
Epoch 31/50
189/189 [==============================] - 11s 56ms/step - loss: 3.9979
Epoch 32/50
189/189 [==============================] - 11s 56ms/step - loss: 3.9777
Epoch 33/50
189/189 [==============================] - 10s 55ms/step - loss: 3.9800
Epoch 34/50
189/189 [==============================] - 11s 56ms/step - loss: 3.9538
Epoch 35/50
189/189 [==============================] - 11s 56ms/step - loss: 3.9298
Epoch 36/50
189/189 [==============================] - 11s 57ms/step - loss: 3.9241
Epoch 37/50
189/189 [==============================] - 11s 56ms/step - loss: 3.9102
Epoch 38/50
189/189 [==============================] - 11s 56ms/step - loss: 3.9075
Epoch 39/50
189/189 [==============================] - 11s 56ms/step - loss: 3.8897
Epoch 40/50
189/189 [==============================] - 11s 57ms/step - loss: 3.8871
Epoch 41/50
189/189 [==============================] - 11s 56ms/step - loss: 3.8596
Epoch 42/50
189/189 [==============================] - 10s 56ms/step - loss: 3.8526
Epoch 43/50
189/189 [==============================] - 11s 56ms/step - loss: 3.8417
Epoch 44/50
189/189 [==============================] - 10s 55ms/step - loss: 3.8239
Epoch 45/50
189/189 [==============================] - 11s 56ms/step - loss: 3.8178
Epoch 46/50
189/189 [==============================] - 11s 56ms/step - loss: 3.8065
Epoch 47/50
189/189 [==============================] - 11s 56ms/step - loss: 3.8185
Epoch 48/50
189/189 [==============================] - 11s 56ms/step - loss: 3.8022
Epoch 49/50
189/189 [==============================] - 11s 56ms/step - loss: 3.7815
Epoch 50/50
189/189 [==============================] - 11s 56ms/step - loss: 3.7601
3. Train the classifier with the frozen encoder
classifier = create_classifier(encoder, trainable=False)
history = classifier.fit(x=x_train, y=y_train, batch_size=batch_size, epochs=num_epochs)
accuracy = classifier.evaluate(x_test, y_test)[1]
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
Result
Epoch 1/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3979 - sparse_categorical_accuracy: 0.8869
Epoch 2/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3422 - sparse_categorical_accuracy: 0.8959
Epoch 3/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3251 - sparse_categorical_accuracy: 0.9004
Epoch 4/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3313 - sparse_categorical_accuracy: 0.8963
Epoch 5/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3213 - sparse_categorical_accuracy: 0.9006
Epoch 6/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3221 - sparse_categorical_accuracy: 0.9001
Epoch 7/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3134 - sparse_categorical_accuracy: 0.9001
Epoch 8/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3245 - sparse_categorical_accuracy: 0.8978
Epoch 9/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3144 - sparse_categorical_accuracy: 0.9001
Epoch 10/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3191 - sparse_categorical_accuracy: 0.8984
Epoch 11/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3104 - sparse_categorical_accuracy: 0.9025
Epoch 12/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3261 - sparse_categorical_accuracy: 0.8958
Epoch 13/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3130 - sparse_categorical_accuracy: 0.9001
Epoch 14/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3147 - sparse_categorical_accuracy: 0.9003
Epoch 15/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3113 - sparse_categorical_accuracy: 0.9016
Epoch 16/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3114 - sparse_categorical_accuracy: 0.9008
Epoch 17/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3044 - sparse_categorical_accuracy: 0.9026
Epoch 18/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3142 - sparse_categorical_accuracy: 0.8987
Epoch 19/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3139 - sparse_categorical_accuracy: 0.9018
Epoch 20/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3199 - sparse_categorical_accuracy: 0.8987
Epoch 21/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3125 - sparse_categorical_accuracy: 0.8994
Epoch 22/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3291 - sparse_categorical_accuracy: 0.8967
Epoch 23/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3208 - sparse_categorical_accuracy: 0.8963
Epoch 24/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3065 - sparse_categorical_accuracy: 0.9041
Epoch 25/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3099 - sparse_categorical_accuracy: 0.9006
Epoch 26/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3181 - sparse_categorical_accuracy: 0.8986
Epoch 27/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3112 - sparse_categorical_accuracy: 0.9013
Epoch 28/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3136 - sparse_categorical_accuracy: 0.8996
Epoch 29/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3217 - sparse_categorical_accuracy: 0.8969
Epoch 30/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3161 - sparse_categorical_accuracy: 0.8998
Epoch 31/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3151 - sparse_categorical_accuracy: 0.8999
Epoch 32/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3092 - sparse_categorical_accuracy: 0.9009
Epoch 33/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3246 - sparse_categorical_accuracy: 0.8961
Epoch 34/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3143 - sparse_categorical_accuracy: 0.8995
Epoch 35/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3106 - sparse_categorical_accuracy: 0.9002
Epoch 36/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3210 - sparse_categorical_accuracy: 0.8980
Epoch 37/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3178 - sparse_categorical_accuracy: 0.9009
Epoch 38/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3064 - sparse_categorical_accuracy: 0.9032
Epoch 39/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3196 - sparse_categorical_accuracy: 0.8981
Epoch 40/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3177 - sparse_categorical_accuracy: 0.8988
Epoch 41/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3167 - sparse_categorical_accuracy: 0.8987
Epoch 42/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3110 - sparse_categorical_accuracy: 0.9014
Epoch 43/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3124 - sparse_categorical_accuracy: 0.9002
Epoch 44/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3128 - sparse_categorical_accuracy: 0.8999
Epoch 45/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3131 - sparse_categorical_accuracy: 0.8991
Epoch 46/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3149 - sparse_categorical_accuracy: 0.8992
Epoch 47/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3082 - sparse_categorical_accuracy: 0.9021
Epoch 48/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3223 - sparse_categorical_accuracy: 0.8959
Epoch 49/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3195 - sparse_categorical_accuracy: 0.8981
Epoch 50/50
189/189 [==============================] - 3s 16ms/step - loss: 0.3240 - sparse_categorical_accuracy: 0.8962
313/313 [==============================] - 2s 7ms/step - loss: 0.7332 - sparse_categorical_accuracy: 0.8162
Test accuracy: 81.62%
We get to an improved test accuracy.
Conclusion
As shown in the experiments, using the supervised contrastive learning technique outperformed the conventional technique in terms of the test accuracy. Note that the same training budget (i.e., number of epochs) was given to each technique. Supervised contrastive learning pays off when the encoder involves a complex architecture, like ResNet, and multi-class problems with many labels. In addition, large batch sizes and multi-layer projection heads improve its effectiveness. See the Supervised Contrastive Learning paper for more details.
You can use the trained model hosted on Hugging Face Hub and try the demo on Hugging Face Spaces.