Text Extraction with BERT
- Original Link : https://keras.io/examples/nlp/text_extraction_with_bert/
- Last Checked at : 2024-11-21
Author: Apoorv Nandan
Date created: 2020/05/23
Last modified: 2020/05/23
Description: Fine tune pretrained BERT from HuggingFace Transformers on SQuAD.
Introduction
This demonstration uses SQuAD (Stanford Question-Answering Dataset). In SQuAD, an input consists of a question, and a paragraph for context. The goal is to find the span of text in the paragraph that answers the question. We evaluate our performance on this data with the “Exact Match” metric, which measures the percentage of predictions that exactly match any one of the ground-truth answers.
We fine-tune a BERT model to perform this task as follows:
- Feed the context and the question as inputs to BERT.
- Take two vectors S and T with dimensions equal to that of hidden states in BERT.
- Compute the probability of each token being the start and end of the answer span. The probability of a token being the start of the answer is given by a dot product between S and the representation of the token in the last layer of BERT, followed by a softmax over all tokens. The probability of a token being the end of the answer is computed similarly with the vector T.
- Fine-tune BERT and learn S and T along the way.
References:
Setup
import os
import re
import json
import string
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tokenizers import BertWordPieceTokenizer
from transformers import BertTokenizer, TFBertModel, BertConfig
max_len = 384
configuration = BertConfig() # default parameters and configuration for BERT
Set-up BERT tokenizer
# Save the slow pretrained tokenizer
slow_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
save_path = "bert_base_uncased/"
if not os.path.exists(save_path):
os.makedirs(save_path)
slow_tokenizer.save_pretrained(save_path)
# Load the fast tokenizer from saved file
tokenizer = BertWordPieceTokenizer("bert_base_uncased/vocab.txt", lowercase=True)
Load the data
train_data_url = "https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json"
train_path = keras.utils.get_file("train.json", train_data_url)
eval_data_url = "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json"
eval_path = keras.utils.get_file("eval.json", eval_data_url)
Preprocess the data
- Go through the JSON file and store every record as a
SquadExample
object. - Go through each
SquadExample
and createx_train, y_train, x_eval, y_eval
.
class SquadExample:
def __init__(self, question, context, start_char_idx, answer_text, all_answers):
self.question = question
self.context = context
self.start_char_idx = start_char_idx
self.answer_text = answer_text
self.all_answers = all_answers
self.skip = False
def preprocess(self):
context = self.context
question = self.question
answer_text = self.answer_text
start_char_idx = self.start_char_idx
# Clean context, answer and question
context = " ".join(str(context).split())
question = " ".join(str(question).split())
answer = " ".join(str(answer_text).split())
# Find end character index of answer in context
end_char_idx = start_char_idx + len(answer)
if end_char_idx >= len(context):
self.skip = True
return
# Mark the character indexes in context that are in answer
is_char_in_ans = [0] * len(context)
for idx in range(start_char_idx, end_char_idx):
is_char_in_ans[idx] = 1
# Tokenize context
tokenized_context = tokenizer.encode(context)
# Find tokens that were created from answer characters
ans_token_idx = []
for idx, (start, end) in enumerate(tokenized_context.offsets):
if sum(is_char_in_ans[start:end]) > 0:
ans_token_idx.append(idx)
if len(ans_token_idx) == 0:
self.skip = True
return
# Find start and end token index for tokens from answer
start_token_idx = ans_token_idx[0]
end_token_idx = ans_token_idx[-1]
# Tokenize question
tokenized_question = tokenizer.encode(question)
# Create inputs
input_ids = tokenized_context.ids + tokenized_question.ids[1:]
token_type_ids = [0] * len(tokenized_context.ids) + [1] * len(
tokenized_question.ids[1:]
)
attention_mask = [1] * len(input_ids)
# Pad and create attention masks.
# Skip if truncation is needed
padding_length = max_len - len(input_ids)
if padding_length > 0: # pad
input_ids = input_ids + ([0] * padding_length)
attention_mask = attention_mask + ([0] * padding_length)
token_type_ids = token_type_ids + ([0] * padding_length)
elif padding_length < 0: # skip
self.skip = True
return
self.input_ids = input_ids
self.token_type_ids = token_type_ids
self.attention_mask = attention_mask
self.start_token_idx = start_token_idx
self.end_token_idx = end_token_idx
self.context_token_to_char = tokenized_context.offsets
with open(train_path) as f:
raw_train_data = json.load(f)
with open(eval_path) as f:
raw_eval_data = json.load(f)
def create_squad_examples(raw_data):
squad_examples = []
for item in raw_data["data"]:
for para in item["paragraphs"]:
context = para["context"]
for qa in para["qas"]:
question = qa["question"]
answer_text = qa["answers"][0]["text"]
all_answers = [_["text"] for _ in qa["answers"]]
start_char_idx = qa["answers"][0]["answer_start"]
squad_eg = SquadExample(
question, context, start_char_idx, answer_text, all_answers
)
squad_eg.preprocess()
squad_examples.append(squad_eg)
return squad_examples
def create_inputs_targets(squad_examples):
dataset_dict = {
"input_ids": [],
"token_type_ids": [],
"attention_mask": [],
"start_token_idx": [],
"end_token_idx": [],
}
for item in squad_examples:
if item.skip == False:
for key in dataset_dict:
dataset_dict[key].append(getattr(item, key))
for key in dataset_dict:
dataset_dict[key] = np.array(dataset_dict[key])
x = [
dataset_dict["input_ids"],
dataset_dict["token_type_ids"],
dataset_dict["attention_mask"],
]
y = [dataset_dict["start_token_idx"], dataset_dict["end_token_idx"]]
return x, y
train_squad_examples = create_squad_examples(raw_train_data)
x_train, y_train = create_inputs_targets(train_squad_examples)
print(f"{len(train_squad_examples)} training points created.")
eval_squad_examples = create_squad_examples(raw_eval_data)
x_eval, y_eval = create_inputs_targets(eval_squad_examples)
print(f"{len(eval_squad_examples)} evaluation points created.")
Result
87599 training points created.
10570 evaluation points created.
Create the Question-Answering Model using BERT and Functional API
def create_model():
## BERT encoder
encoder = TFBertModel.from_pretrained("bert-base-uncased")
## QA Model
input_ids = layers.Input(shape=(max_len,), dtype=tf.int32)
token_type_ids = layers.Input(shape=(max_len,), dtype=tf.int32)
attention_mask = layers.Input(shape=(max_len,), dtype=tf.int32)
embedding = encoder(
input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask
)[0]
start_logits = layers.Dense(1, name="start_logit", use_bias=False)(embedding)
start_logits = layers.Flatten()(start_logits)
end_logits = layers.Dense(1, name="end_logit", use_bias=False)(embedding)
end_logits = layers.Flatten()(end_logits)
start_probs = layers.Activation(keras.activations.softmax)(start_logits)
end_probs = layers.Activation(keras.activations.softmax)(end_logits)
model = keras.Model(
inputs=[input_ids, token_type_ids, attention_mask],
outputs=[start_probs, end_probs],
)
loss = keras.losses.SparseCategoricalCrossentropy(from_logits=False)
optimizer = keras.optimizers.Adam(lr=5e-5)
model.compile(optimizer=optimizer, loss=[loss, loss])
return model
This code should preferably be run on Google Colab TPU runtime. With Colab TPUs, each epoch will take 5-6 minutes.
use_tpu = True
if use_tpu:
# Create distribution strategy
tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
strategy = tf.distribute.TPUStrategy(tpu)
# Create model
with strategy.scope():
model = create_model()
else:
model = create_model()
model.summary()
Result
INFO:absl:Entering into master device scope: /job:worker/replica:0/task:0/device:CPU:0
INFO:tensorflow:Initializing the TPU system: grpc://10.48.159.170:8470
INFO:tensorflow:Clearing out eager caches
INFO:tensorflow:Finished initializing TPU system.
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
Model: "model"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 384)] 0
__________________________________________________________________________________________________
input_3 (InputLayer) [(None, 384)] 0
__________________________________________________________________________________________________
input_2 (InputLayer) [(None, 384)] 0
__________________________________________________________________________________________________
tf_bert_model (TFBertModel) ((None, 384, 768), ( 109482240 input_1[0][0]
__________________________________________________________________________________________________
start_logit (Dense) (None, 384, 1) 768 tf_bert_model[0][0]
__________________________________________________________________________________________________
end_logit (Dense) (None, 384, 1) 768 tf_bert_model[0][0]
__________________________________________________________________________________________________
flatten (Flatten) (None, 384) 0 start_logit[0][0]
__________________________________________________________________________________________________
flatten_1 (Flatten) (None, 384) 0 end_logit[0][0]
__________________________________________________________________________________________________
activation_7 (Activation) (None, 384) 0 flatten[0][0]
__________________________________________________________________________________________________
activation_8 (Activation) (None, 384) 0 flatten_1[0][0]
==================================================================================================
Total params: 109,483,776
Trainable params: 109,483,776
Non-trainable params: 0
__________________________________________________________________________________________________
Create evaluation Callback
This callback will compute the exact match score using the validation data after every epoch.
def normalize_text(text):
text = text.lower()
# Remove punctuations
exclude = set(string.punctuation)
text = "".join(ch for ch in text if ch not in exclude)
# Remove articles
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
text = re.sub(regex, " ", text)
# Remove extra white space
text = " ".join(text.split())
return text
class ExactMatch(keras.callbacks.Callback):
"""
Each `SquadExample` object contains the character level offsets for each token
in its input paragraph. We use them to get back the span of text corresponding
to the tokens between our predicted start and end tokens.
All the ground-truth answers are also present in each `SquadExample` object.
We calculate the percentage of data points where the span of text obtained
from model predictions matches one of the ground-truth answers.
"""
def __init__(self, x_eval, y_eval):
self.x_eval = x_eval
self.y_eval = y_eval
def on_epoch_end(self, epoch, logs=None):
pred_start, pred_end = self.model.predict(self.x_eval)
count = 0
eval_examples_no_skip = [_ for _ in eval_squad_examples if _.skip == False]
for idx, (start, end) in enumerate(zip(pred_start, pred_end)):
squad_eg = eval_examples_no_skip[idx]
offsets = squad_eg.context_token_to_char
start = np.argmax(start)
end = np.argmax(end)
if start >= len(offsets):
continue
pred_char_start = offsets[start][0]
if end < len(offsets):
pred_char_end = offsets[end][1]
pred_ans = squad_eg.context[pred_char_start:pred_char_end]
else:
pred_ans = squad_eg.context[pred_char_start:]
normalized_pred_ans = normalize_text(pred_ans)
normalized_true_ans = [normalize_text(_) for _ in squad_eg.all_answers]
if normalized_pred_ans in normalized_true_ans:
count += 1
acc = count / len(self.y_eval[0])
print(f"\nepoch={epoch+1}, exact match score={acc:.2f}")
Train and Evaluate
exact_match_callback = ExactMatch(x_eval, y_eval)
model.fit(
x_train,
y_train,
epochs=1, # For demonstration, 3 epochs are recommended
verbose=2,
batch_size=64,
callbacks=[exact_match_callback],
)
Result
epoch=1, exact match score=0.78
1346/1346 - 350s - activation_7_loss: 1.3488 - loss: 2.5905 - activation_8_loss: 1.2417
<tensorflow.python.keras.callbacks.History at 0x7fc78b4458d0>