Semantic Similarity with BERT
- Original Link : https://keras.io/examples/nlp/semantic_similarity_with_bert/
- Last Checked at : 2024-11-21
Author: Mohamad Merchant
Date created: 2020/08/15
Last modified: 2020/08/29
Description: Natural Language Inference by fine-tuning BERT model on SNLI Corpus.
Introduction
Semantic Similarity is the task of determining how similar two sentences are, in terms of what they mean. This example demonstrates the use of SNLI (Stanford Natural Language Inference) Corpus to predict sentence semantic similarity with Transformers. We will fine-tune a BERT model that takes two sentences as inputs and that outputs a similarity score for these two sentences.
References
Setup
Note: install HuggingFace transformers
via pip install transformers
(version >= 2.11.0).
import numpy as np
import pandas as pd
import tensorflow as tf
import transformers
Configuration
max_length = 128 # Maximum length of input sentence to the model.
batch_size = 32
epochs = 2
# Labels in our dataset.
labels = ["contradiction", "entailment", "neutral"]
Load the Data
!curl -LO https://raw.githubusercontent.com/MohamadMerchant/SNLI/master/data.tar.gz
!tar -xvzf data.tar.gz
# There are more than 550k samples in total; we will use 100k for this example.
train_df = pd.read_csv("SNLI_Corpus/snli_1.0_train.csv", nrows=100000)
valid_df = pd.read_csv("SNLI_Corpus/snli_1.0_dev.csv")
test_df = pd.read_csv("SNLI_Corpus/snli_1.0_test.csv")
# Shape of the data
print(f"Total train samples : {train_df.shape[0]}")
print(f"Total validation samples: {valid_df.shape[0]}")
print(f"Total test samples: {valid_df.shape[0]}")
Result
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 11.1M 100 11.1M 0 0 5231k 0 0:00:02 0:00:02 --:--:-- 5231k
SNLI_Corpus/
SNLI_Corpus/snli_1.0_dev.csv
SNLI_Corpus/snli_1.0_train.csv
SNLI_Corpus/snli_1.0_test.csv
Total train samples : 100000
Total validation samples: 10000
Total test samples: 10000
Dataset Overview:
- sentence1: The premise caption that was supplied to the author of the pair.
- sentence2: The hypothesis caption that was written by the author of the pair.
- similarity: This is the label chosen by the majority of annotators. Where no majority exists, the label “-” is used (we will skip such samples here).
Here are the “similarity” label values in our dataset:
- Contradiction: The sentences share no similarity.
- Entailment: The sentences have similar meaning.
- Neutral: The sentences are neutral.
Let’s look at one sample from the dataset:
print(f"Sentence1: {train_df.loc[1, 'sentence1']}")
print(f"Sentence2: {train_df.loc[1, 'sentence2']}")
print(f"Similarity: {train_df.loc[1, 'similarity']}")
Result
Sentence1: A person on a horse jumps over a broken down airplane.
Sentence2: A person is at a diner, ordering an omelette.
Similarity: contradiction
Preprocessing
# We have some NaN entries in our train data, we will simply drop them.
print("Number of missing values")
print(train_df.isnull().sum())
train_df.dropna(axis=0, inplace=True)
Result
Number of missing values
similarity 0
sentence1 0
sentence2 3
dtype: int64
Distribution of our training targets.
print("Train Target Distribution")
print(train_df.similarity.value_counts())
Result
Train Target Distribution
entailment 33384
contradiction 33310
neutral 33193
- 110
Name: similarity, dtype: int64
Distribution of our validation targets.
print("Validation Target Distribution")
print(valid_df.similarity.value_counts())
Result
Validation Target Distribution
entailment 3329
contradiction 3278
neutral 3235
- 158
Name: similarity, dtype: int64
The value “-” appears as part of our training and validation targets. We will skip these samples.
train_df = (
train_df[train_df.similarity != "-"]
.sample(frac=1.0, random_state=42)
.reset_index(drop=True)
)
valid_df = (
valid_df[valid_df.similarity != "-"]
.sample(frac=1.0, random_state=42)
.reset_index(drop=True)
)
One-hot encode training, validation, and test labels.
train_df["label"] = train_df["similarity"].apply(
lambda x: 0 if x == "contradiction" else 1 if x == "entailment" else 2
)
y_train = tf.keras.utils.to_categorical(train_df.label, num_classes=3)
valid_df["label"] = valid_df["similarity"].apply(
lambda x: 0 if x == "contradiction" else 1 if x == "entailment" else 2
)
y_val = tf.keras.utils.to_categorical(valid_df.label, num_classes=3)
test_df["label"] = test_df["similarity"].apply(
lambda x: 0 if x == "contradiction" else 1 if x == "entailment" else 2
)
y_test = tf.keras.utils.to_categorical(test_df.label, num_classes=3)
Create a custom data generator
class BertSemanticDataGenerator(tf.keras.utils.Sequence):
"""Generates batches of data.
Args:
sentence_pairs: Array of premise and hypothesis input sentences.
labels: Array of labels.
batch_size: Integer batch size.
shuffle: boolean, whether to shuffle the data.
include_targets: boolean, whether to include the labels.
Returns:
Tuples `([input_ids, attention_mask, `token_type_ids], labels)`
(or just `[input_ids, attention_mask, `token_type_ids]`
if `include_targets=False`)
"""
def __init__(
self,
sentence_pairs,
labels,
batch_size=batch_size,
shuffle=True,
include_targets=True,
):
self.sentence_pairs = sentence_pairs
self.labels = labels
self.shuffle = shuffle
self.batch_size = batch_size
self.include_targets = include_targets
# Load our BERT Tokenizer to encode the text.
# We will use base-base-uncased pretrained model.
self.tokenizer = transformers.BertTokenizer.from_pretrained(
"bert-base-uncased", do_lower_case=True
)
self.indexes = np.arange(len(self.sentence_pairs))
self.on_epoch_end()
def __len__(self):
# Denotes the number of batches per epoch.
return len(self.sentence_pairs) // self.batch_size
def __getitem__(self, idx):
# Retrieves the batch of index.
indexes = self.indexes[idx * self.batch_size : (idx + 1) * self.batch_size]
sentence_pairs = self.sentence_pairs[indexes]
# With BERT tokenizer's batch_encode_plus batch of both the sentences are
# encoded together and separated by [SEP] token.
encoded = self.tokenizer.batch_encode_plus(
sentence_pairs.tolist(),
add_special_tokens=True,
max_length=max_length,
return_attention_mask=True,
return_token_type_ids=True,
pad_to_max_length=True,
return_tensors="tf",
)
# Convert batch of encoded features to numpy array.
input_ids = np.array(encoded["input_ids"], dtype="int32")
attention_masks = np.array(encoded["attention_mask"], dtype="int32")
token_type_ids = np.array(encoded["token_type_ids"], dtype="int32")
# Set to true if data generator is used for training/validation.
if self.include_targets:
labels = np.array(self.labels[indexes], dtype="int32")
return [input_ids, attention_masks, token_type_ids], labels
else:
return [input_ids, attention_masks, token_type_ids]
def on_epoch_end(self):
# Shuffle indexes after each epoch if shuffle is set to True.
if self.shuffle:
np.random.RandomState(42).shuffle(self.indexes)
Build the model
# Create the model under a distribution strategy scope.
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
# Encoded token ids from BERT tokenizer.
input_ids = tf.keras.layers.Input(
shape=(max_length,), dtype=tf.int32, name="input_ids"
)
# Attention masks indicates to the model which tokens should be attended to.
attention_masks = tf.keras.layers.Input(
shape=(max_length,), dtype=tf.int32, name="attention_masks"
)
# Token type ids are binary masks identifying different sequences in the model.
token_type_ids = tf.keras.layers.Input(
shape=(max_length,), dtype=tf.int32, name="token_type_ids"
)
# Loading pretrained BERT model.
bert_model = transformers.TFBertModel.from_pretrained("bert-base-uncased")
# Freeze the BERT model to reuse the pretrained features without modifying them.
bert_model.trainable = False
bert_output = bert_model.bert(
input_ids, attention_mask=attention_masks, token_type_ids=token_type_ids
)
sequence_output = bert_output.last_hidden_state
pooled_output = bert_output.pooler_output
# Add trainable layers on top of frozen layers to adapt the pretrained features on the new data.
bi_lstm = tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(64, return_sequences=True)
)(sequence_output)
# Applying hybrid pooling approach to bi_lstm sequence output.
avg_pool = tf.keras.layers.GlobalAveragePooling1D()(bi_lstm)
max_pool = tf.keras.layers.GlobalMaxPooling1D()(bi_lstm)
concat = tf.keras.layers.concatenate([avg_pool, max_pool])
dropout = tf.keras.layers.Dropout(0.3)(concat)
output = tf.keras.layers.Dense(3, activation="softmax")(dropout)
model = tf.keras.models.Model(
inputs=[input_ids, attention_masks, token_type_ids], outputs=output
)
model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss="categorical_crossentropy",
metrics=["acc"],
)
print(f"Strategy: {strategy}")
model.summary()
Result
HBox(children=(FloatProgress(value=0.0, description='Downloading', max=433.0, style=ProgressStyle(description_…
HBox(children=(FloatProgress(value=0.0, description='Downloading', max=536063208.0, style=ProgressStyle(descri…
Strategy: <tensorflow.python.distribute.mirrored_strategy.MirroredStrategy object at 0x7faf9dc63a90>
Model: "functional_1"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_ids (InputLayer) [(None, 128)] 0
__________________________________________________________________________________________________
attention_masks (InputLayer) [(None, 128)] 0
__________________________________________________________________________________________________
token_type_ids (InputLayer) [(None, 128)] 0
__________________________________________________________________________________________________
tf_bert_model (TFBertModel) ((None, 128, 768), ( 109482240 input_ids[0][0]
attention_masks[0][0]
token_type_ids[0][0]
__________________________________________________________________________________________________
bidirectional (Bidirectional) (None, 128, 128) 426496 tf_bert_model[0][0]
__________________________________________________________________________________________________
global_average_pooling1d (Globa (None, 128) 0 bidirectional[0][0]
__________________________________________________________________________________________________
global_max_pooling1d (GlobalMax (None, 128) 0 bidirectional[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 256) 0 global_average_pooling1d[0][0]
global_max_pooling1d[0][0]
__________________________________________________________________________________________________
dropout_37 (Dropout) (None, 256) 0 concatenate[0][0]
__________________________________________________________________________________________________
dense (Dense) (None, 3) 771 dropout_37[0][0]
==================================================================================================
Total params: 109,909,507
Trainable params: 427,267
Non-trainable params: 109,482,240
__________________________________________________________________________________________________
Create train and validation data generators
train_data = BertSemanticDataGenerator(
train_df[["sentence1", "sentence2"]].values.astype("str"),
y_train,
batch_size=batch_size,
shuffle=True,
)
valid_data = BertSemanticDataGenerator(
valid_df[["sentence1", "sentence2"]].values.astype("str"),
y_val,
batch_size=batch_size,
shuffle=False,
)
Result
HBox(children=(FloatProgress(value=0.0, description='Downloading', max=231508.0, style=ProgressStyle(descripti…
Train the Model
Training is done only for the top layers to perform “feature extraction”, which will allow the model to use the representations of the pretrained model.
history = model.fit(
train_data,
validation_data=valid_data,
epochs=epochs,
use_multiprocessing=True,
workers=-1,
)
Result
Epoch 1/2
3121/3121 [==============================] - 666s 213ms/step - loss: 0.6925 - acc: 0.7049 - val_loss: 0.5294 - val_acc: 0.7899
Epoch 2/2
3121/3121 [==============================] - 661s 212ms/step - loss: 0.5917 - acc: 0.7587 - val_loss: 0.4955 - val_acc: 0.8052
Fine-tuning
This step must only be performed after the feature extraction model has been trained to convergence on the new data.
This is an optional last step where bert_model
is unfreezed and retrained with a very low learning rate. This can deliver meaningful improvement by incrementally adapting the pretrained features to the new data.
# Unfreeze the bert_model.
bert_model.trainable = True
# Recompile the model to make the change effective.
model.compile(
optimizer=tf.keras.optimizers.Adam(1e-5),
loss="categorical_crossentropy",
metrics=["accuracy"],
)
model.summary()
Result
Model: "functional_1"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_ids (InputLayer) [(None, 128)] 0
__________________________________________________________________________________________________
attention_masks (InputLayer) [(None, 128)] 0
__________________________________________________________________________________________________
token_type_ids (InputLayer) [(None, 128)] 0
__________________________________________________________________________________________________
tf_bert_model (TFBertModel) ((None, 128, 768), ( 109482240 input_ids[0][0]
attention_masks[0][0]
token_type_ids[0][0]
__________________________________________________________________________________________________
bidirectional (Bidirectional) (None, 128, 128) 426496 tf_bert_model[0][0]
__________________________________________________________________________________________________
global_average_pooling1d (Globa (None, 128) 0 bidirectional[0][0]
__________________________________________________________________________________________________
global_max_pooling1d (GlobalMax (None, 128) 0 bidirectional[0][0]
__________________________________________________________________________________________________
concatenate (Concatenate) (None, 256) 0 global_average_pooling1d[0][0]
global_max_pooling1d[0][0]
__________________________________________________________________________________________________
dropout_37 (Dropout) (None, 256) 0 concatenate[0][0]
__________________________________________________________________________________________________
dense (Dense) (None, 3) 771 dropout_37[0][0]
==================================================================================================
Total params: 109,909,507
Trainable params: 109,909,507
Non-trainable params: 0
__________________________________________________________________________________________________
Train the entire model end-to-end
history = model.fit(
train_data,
validation_data=valid_data,
epochs=epochs,
use_multiprocessing=True,
workers=-1,
)
Result
Epoch 1/2
3121/3121 [==============================] - 1574s 504ms/step - loss: 0.4698 - accuracy: 0.8181 - val_loss: 0.3787 - val_accuracy: 0.8598
Epoch 2/2
3121/3121 [==============================] - 1569s 503ms/step - loss: 0.3516 - accuracy: 0.8702 - val_loss: 0.3416 - val_accuracy: 0.8757
Evaluate model on the test set
test_data = BertSemanticDataGenerator(
test_df[["sentence1", "sentence2"]].values.astype("str"),
y_test,
batch_size=batch_size,
shuffle=False,
)
model.evaluate(test_data, verbose=1)
Result
312/312 [==============================] - 55s 177ms/step - loss: 0.3697 - accuracy: 0.8629
[0.3696725070476532, 0.8628805875778198]
Inference on custom sentences
def check_similarity(sentence1, sentence2):
sentence_pairs = np.array([[str(sentence1), str(sentence2)]])
test_data = BertSemanticDataGenerator(
sentence_pairs, labels=None, batch_size=1, shuffle=False, include_targets=False,
)
proba = model.predict(test_data[0])[0]
idx = np.argmax(proba)
proba = f"{proba[idx]: .2f}%"
pred = labels[idx]
return pred, proba
Check results on some example sentence pairs.
sentence1 = "Two women are observing something together."
sentence2 = "Two women are standing with their eyes closed."
check_similarity(sentence1, sentence2)
Result
('contradiction', ' 0.91%')
Check results on some example sentence pairs.
sentence1 = "A smiling costumed woman is holding an umbrella"
sentence2 = "A happy woman in a fairy costume holds an umbrella"
check_similarity(sentence1, sentence2)
Result
('neutral', ' 0.88%')
Check results on some example sentence pairs
sentence1 = "A soccer game with multiple males playing"
sentence2 = "Some men are playing a sport"
check_similarity(sentence1, sentence2)
Result
('entailment', ' 0.94%')
Example available on HuggingFace
Trained Model | Demo |
---|---|