English-to-Spanish translation with a sequence-to-sequence Transformer
- Original Link : https://keras.io/examples/nlp/neural_machine_translation_with_transformer/
- Last Checked at : 2024-11-21
Author: fchollet
Date created: 2021/05/26
Last modified: 2023/02/25
Description: Implementing a sequence-to-sequence Transformer and training it on a machine translation task.
Introduction
In this example, we’ll build a sequence-to-sequence Transformer model, which we’ll train on an English-to-Spanish machine translation task.
You’ll learn how to:
- Vectorize text using the Keras
TextVectorization
layer. - Implement a
TransformerEncoder
layer, aTransformerDecoder
layer, and aPositionalEmbedding
layer. - Prepare data for training a sequence-to-sequence model.
- Use the trained model to generate translations of never-seen-before input sentences (sequence-to-sequence inference).
The code featured here is adapted from the book Deep Learning with Python, Second Edition (chapter 11: Deep learning for text). The present example is fairly barebones, so for detailed explanations of how each building block works, as well as the theory behind Transformers, I recommend reading the book.
Setup
# We set the backend to TensorFlow. The code works with
# both `tensorflow` and `torch`. It does not work with JAX
# due to the behavior of `jax.numpy.tile` in a jit scope
# (used in `TransformerDecoder.get_causal_attention_mask()`:
# `tile` in JAX does not support a dynamic `reps` argument.
# You can make the code work in JAX by wrapping the
# inside of the `get_causal_attention_mask` method in
# a decorator to prevent jit compilation:
# `with jax.ensure_compile_time_eval():`.
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import pathlib
import random
import string
import re
import numpy as np
import tensorflow.data as tf_data
import tensorflow.strings as tf_strings
import keras
from keras import layers
from keras import ops
from keras.layers import TextVectorization
Downloading the data
We’ll be working with an English-to-Spanish translation dataset provided by Anki. Let’s download it:
text_file = keras.utils.get_file(
fname="spa-eng.zip",
origin="http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip",
extract=True,
)
text_file = pathlib.Path(text_file).parent / "spa-eng" / "spa.txt"
Parsing the data
Each line contains an English sentence and its corresponding Spanish sentence. The English sentence is the source sequence and Spanish one is the target sequence. We prepend the token "[start]"
and we append the token "[end]"
to the Spanish sentence.
with open(text_file) as f:
lines = f.read().split("\n")[:-1]
text_pairs = []
for line in lines:
eng, spa = line.split("\t")
spa = "[start] " + spa + " [end]"
text_pairs.append((eng, spa))
Here’s what our sentence pairs look like:
for _ in range(5):
print(random.choice(text_pairs))
Result
("On Saturday nights, it's difficult to find parking around here.", '[start] Los sábados por la noche es difícil encontrar aparcamiento por aquí. [end]')
('I was the worst student in the class.', '[start] Fui el peor estudiante en la clase. [end]')
('There is nothing to do today.', '[start] No hay nada que hacer hoy. [end]')
('The twins do resemble each other.', '[start] Los gemelos se parecen mutuamente. [end]')
('They found Tom in the crowd.', '[start] Encontraron a Tom entre la multitud. [end]')
Now, let’s split the sentence pairs into a training set, a validation set, and a test set.
random.shuffle(text_pairs)
num_val_samples = int(0.15 * len(text_pairs))
num_train_samples = len(text_pairs) - 2 * num_val_samples
train_pairs = text_pairs[:num_train_samples]
val_pairs = text_pairs[num_train_samples : num_train_samples + num_val_samples]
test_pairs = text_pairs[num_train_samples + num_val_samples :]
print(f"{len(text_pairs)} total pairs")
print(f"{len(train_pairs)} training pairs")
print(f"{len(val_pairs)} validation pairs")
print(f"{len(test_pairs)} test pairs")
Result
118964 total pairs
83276 training pairs
17844 validation pairs
17844 test pairs
Vectorizing the text data
We’ll use two instances of the TextVectorization
layer to vectorize the text data (one for English and one for Spanish), that is to say, to turn the original strings into integer sequences where each integer represents the index of a word in a vocabulary.
The English layer will use the default string standardization (strip punctuation characters) and splitting scheme (split on whitespace), while the Spanish layer will use a custom standardization, where we add the character "¿"
to the set of punctuation characters to be stripped.
Note: in a production-grade machine translation model, I would not recommend stripping the punctuation characters in either language. Instead, I would recommend turning each punctuation character into its own token, which you could achieve by providing a custom split
function to the TextVectorization
layer.
strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")
vocab_size = 15000
sequence_length = 20
batch_size = 64
def custom_standardization(input_string):
lowercase = tf_strings.lower(input_string)
return tf_strings.regex_replace(lowercase, "[%s]" % re.escape(strip_chars), "")
eng_vectorization = TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length,
)
spa_vectorization = TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length + 1,
standardize=custom_standardization,
)
train_eng_texts = [pair[0] for pair in train_pairs]
train_spa_texts = [pair[1] for pair in train_pairs]
eng_vectorization.adapt(train_eng_texts)
spa_vectorization.adapt(train_spa_texts)
Next, we’ll format our datasets.
At each training step, the model will seek to predict target words N+1 (and beyond) using the source sentence and the target words 0 to N.
As such, the training dataset will yield a tuple (inputs, targets)
, where:
inputs
is a dictionary with the keysencoder_inputs
anddecoder_inputs
.encoder_inputs
is the vectorized source sentence andencoder_inputs
is the target sentence “so far”, that is to say, the words 0 to N used to predict word N+1 (and beyond) in the target sentence.target
is the target sentence offset by one step: it provides the next words in the target sentence – what the model will try to predict.
def format_dataset(eng, spa):
eng = eng_vectorization(eng)
spa = spa_vectorization(spa)
return (
{
"encoder_inputs": eng,
"decoder_inputs": spa[:, :-1],
},
spa[:, 1:],
)
def make_dataset(pairs):
eng_texts, spa_texts = zip(*pairs)
eng_texts = list(eng_texts)
spa_texts = list(spa_texts)
dataset = tf_data.Dataset.from_tensor_slices((eng_texts, spa_texts))
dataset = dataset.batch(batch_size)
dataset = dataset.map(format_dataset)
return dataset.cache().shuffle(2048).prefetch(16)
train_ds = make_dataset(train_pairs)
val_ds = make_dataset(val_pairs)
Let’s take a quick look at the sequence shapes (we have batches of 64 pairs, and all sequences are 20 steps long):
for inputs, targets in train_ds.take(1):
print(f'inputs["encoder_inputs"].shape: {inputs["encoder_inputs"].shape}')
print(f'inputs["decoder_inputs"].shape: {inputs["decoder_inputs"].shape}')
print(f"targets.shape: {targets.shape}")
Result
inputs["encoder_inputs"].shape: (64, 20)
inputs["decoder_inputs"].shape: (64, 20)
targets.shape: (64, 20)
Building the model
Our sequence-to-sequence Transformer consists of a TransformerEncoder
and a TransformerDecoder
chained together. To make the model aware of word order, we also use a PositionalEmbedding
layer.
The source sequence will be pass to the TransformerEncoder
, which will produce a new representation of it. This new representation will then be passed to the TransformerDecoder
, together with the target sequence so far (target words 0 to N). The TransformerDecoder
will then seek to predict the next words in the target sequence (N+1 and beyond).
A key detail that makes this possible is causal masking (see method get_causal_attention_mask()
on the TransformerDecoder
). The TransformerDecoder
sees the entire sequences at once, and thus we must make sure that it only uses information from target tokens 0 to N when predicting token N+1 (otherwise, it could use information from the future, which would result in a model that cannot be used at inference time).
import keras.ops as ops
class TransformerEncoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.dense_proj = keras.Sequential(
[
layers.Dense(dense_dim, activation="relu"),
layers.Dense(embed_dim),
]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.supports_masking = True
def call(self, inputs, mask=None):
if mask is not None:
padding_mask = ops.cast(mask[:, None, :], dtype="int32")
else:
padding_mask = None
attention_output = self.attention(
query=inputs, value=inputs, key=inputs, attention_mask=padding_mask
)
proj_input = self.layernorm_1(inputs + attention_output)
proj_output = self.dense_proj(proj_input)
return self.layernorm_2(proj_input + proj_output)
def get_config(self):
config = super().get_config()
config.update(
{
"embed_dim": self.embed_dim,
"dense_dim": self.dense_dim,
"num_heads": self.num_heads,
}
)
return config
class PositionalEmbedding(layers.Layer):
def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
super().__init__(**kwargs)
self.token_embeddings = layers.Embedding(
input_dim=vocab_size, output_dim=embed_dim
)
self.position_embeddings = layers.Embedding(
input_dim=sequence_length, output_dim=embed_dim
)
self.sequence_length = sequence_length
self.vocab_size = vocab_size
self.embed_dim = embed_dim
def call(self, inputs):
length = ops.shape(inputs)[-1]
positions = ops.arange(0, length, 1)
embedded_tokens = self.token_embeddings(inputs)
embedded_positions = self.position_embeddings(positions)
return embedded_tokens + embedded_positions
def compute_mask(self, inputs, mask=None):
if mask is None:
return None
else:
return ops.not_equal(inputs, 0)
def get_config(self):
config = super().get_config()
config.update(
{
"sequence_length": self.sequence_length,
"vocab_size": self.vocab_size,
"embed_dim": self.embed_dim,
}
)
return config
class TransformerDecoder(layers.Layer):
def __init__(self, embed_dim, latent_dim, num_heads, **kwargs):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.latent_dim = latent_dim
self.num_heads = num_heads
self.attention_1 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.attention_2 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.dense_proj = keras.Sequential(
[
layers.Dense(latent_dim, activation="relu"),
layers.Dense(embed_dim),
]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.layernorm_3 = layers.LayerNormalization()
self.supports_masking = True
def call(self, inputs, encoder_outputs, mask=None):
causal_mask = self.get_causal_attention_mask(inputs)
if mask is not None:
padding_mask = ops.cast(mask[:, None, :], dtype="int32")
padding_mask = ops.minimum(padding_mask, causal_mask)
else:
padding_mask = None
attention_output_1 = self.attention_1(
query=inputs, value=inputs, key=inputs, attention_mask=causal_mask
)
out_1 = self.layernorm_1(inputs + attention_output_1)
attention_output_2 = self.attention_2(
query=out_1,
value=encoder_outputs,
key=encoder_outputs,
attention_mask=padding_mask,
)
out_2 = self.layernorm_2(out_1 + attention_output_2)
proj_output = self.dense_proj(out_2)
return self.layernorm_3(out_2 + proj_output)
def get_causal_attention_mask(self, inputs):
input_shape = ops.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = ops.arange(sequence_length)[:, None]
j = ops.arange(sequence_length)
mask = ops.cast(i >= j, dtype="int32")
mask = ops.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = ops.concatenate(
[ops.expand_dims(batch_size, -1), ops.convert_to_tensor([1, 1])],
axis=0,
)
return ops.tile(mask, mult)
def get_config(self):
config = super().get_config()
config.update(
{
"embed_dim": self.embed_dim,
"latent_dim": self.latent_dim,
"num_heads": self.num_heads,
}
)
return config
Next, we assemble the end-to-end model.
embed_dim = 256
latent_dim = 2048
num_heads = 8
encoder_inputs = keras.Input(shape=(None,), dtype="int64", name="encoder_inputs")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(encoder_inputs)
encoder_outputs = TransformerEncoder(embed_dim, latent_dim, num_heads)(x)
encoder = keras.Model(encoder_inputs, encoder_outputs)
decoder_inputs = keras.Input(shape=(None,), dtype="int64", name="decoder_inputs")
encoded_seq_inputs = keras.Input(shape=(None, embed_dim), name="decoder_state_inputs")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(decoder_inputs)
x = TransformerDecoder(embed_dim, latent_dim, num_heads)(x, encoded_seq_inputs)
x = layers.Dropout(0.5)(x)
decoder_outputs = layers.Dense(vocab_size, activation="softmax")(x)
decoder = keras.Model([decoder_inputs, encoded_seq_inputs], decoder_outputs)
decoder_outputs = decoder([decoder_inputs, encoder_outputs])
transformer = keras.Model(
[encoder_inputs, decoder_inputs], decoder_outputs, name="transformer"
)
Training our model
We’ll use accuracy as a quick way to monitor training progress on the validation data. Note that machine translation typically uses BLEU scores as well as other metrics, rather than accuracy.
Here we only train for 1 epoch, but to get the model to actually converge you should train for at least 30 epochs.
epochs = 1 # This should be at least 30 for convergence
transformer.summary()
transformer.compile(
"rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
transformer.fit(train_ds, epochs=epochs, validation_data=val_ds)
Result
Model: "transformer"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃ Connected to ┃
┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩
│ encoder_inputs │ (None, None) │ 0 │ - │
│ (InputLayer) │ │ │ │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ positional_embeddi… │ (None, None, 256) │ 3,845,… │ encoder_inputs[0][0] │
│ (PositionalEmbeddi… │ │ │ │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ decoder_inputs │ (None, None) │ 0 │ - │
│ (InputLayer) │ │ │ │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ transformer_encoder │ (None, None, 256) │ 3,155,… │ positional_embeddin… │
│ (TransformerEncode… │ │ │ │
├─────────────────────┼───────────────────┼─────────┼──────────────────────┤
│ functional_5 │ (None, None, │ 12,959… │ decoder_inputs[0][0… │
│ (Functional) │ 15000) │ │ transformer_encoder… │
└─────────────────────┴───────────────────┴─────────┴──────────────────────┘
Total params: 19,960,216 (76.14 MB)
Trainable params: 19,960,216 (76.14 MB)
Non-trainable params: 0 (0.00 B)
5/1302 [37m━━━━━━━━━━━━━━━━━━━━ 42s 33ms/step - accuracy: 0.3558 - loss: 8.3596
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1699484373.932513 76082 device_compiler.h:187] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 64s 39ms/step - accuracy: 0.7073 - loss: 2.2372 - val_accuracy: 0.7329 - val_loss: 1.6477
<keras.src.callbacks.history.History at 0x7ff611f21540>
Decoding test sentences
Finally, let’s demonstrate how to translate brand new English sentences. We simply feed into the model the vectorized English sentence as well as the target token "[start]"
, then we repeatedly generated the next token, until we hit the token "[end]"
.
spa_vocab = spa_vectorization.get_vocabulary()
spa_index_lookup = dict(zip(range(len(spa_vocab)), spa_vocab))
max_decoded_sentence_length = 20
def decode_sequence(input_sentence):
tokenized_input_sentence = eng_vectorization([input_sentence])
decoded_sentence = "[start]"
for i in range(max_decoded_sentence_length):
tokenized_target_sentence = spa_vectorization([decoded_sentence])[:, :-1]
predictions = transformer([tokenized_input_sentence, tokenized_target_sentence])
# ops.argmax(predictions[0, i, :]) is not a concrete value for jax here
sampled_token_index = ops.convert_to_numpy(
ops.argmax(predictions[0, i, :])
).item(0)
sampled_token = spa_index_lookup[sampled_token_index]
decoded_sentence += " " + sampled_token
if sampled_token == "[end]":
break
return decoded_sentence
test_eng_texts = [pair[0] for pair in test_pairs]
for _ in range(30):
input_sentence = random.choice(test_eng_texts)
translated = decode_sequence(input_sentence)
After 30 epochs, we get results such as:
She handed him the money. [start] ella le pasó el dinero [end]
Tom has never heard Mary sing. [start] tom nunca ha oído cantar a mary [end]
Perhaps she will come tomorrow. [start] tal vez ella vendrá mañana [end]
I love to write. [start] me encanta escribir [end]
His French is improving little by little. [start] su francés va a [UNK] sólo un poco [end]
My hotel told me to call you. [start] mi hotel me dijo que te [UNK] [end]