English-to-Spanish translation with KerasHub
- Original Link : https://keras.io/examples/nlp/neural_machine_translation_with_keras_hub/
- Last Checked at : 2024-11-21
Author: Abheesht Sharma
Date created: 2022/05/26
Last modified: 2024/04/30
Description: Use KerasHub to train a sequence-to-sequence Transformer model on the machine translation task.
Introduction
KerasHub provides building blocks for NLP (model layers, tokenizers, metrics, etc.) and makes it convenient to construct NLP pipelines.
In this example, we’ll use KerasHub layers to build an encoder-decoder Transformer model, and train it on the English-to-Spanish machine translation task.
This example is based on the English-to-Spanish NMT example by fchollet. The original example is more low-level and implements layers from scratch, whereas this example uses KerasHub to show some more advanced approaches, such as subword tokenization and using metrics to compute the quality of generated translations.
You’ll learn how to:
- Tokenize text using
keras_hub.tokenizers.WordPieceTokenizer
. - Implement a sequence-to-sequence Transformer model using KerasHub’s
keras_hub.layers.TransformerEncoder
,keras_hub.layers.TransformerDecoder
andkeras_hub.layers.TokenAndPositionEmbedding
layers, and train it. - Use
keras_hub.samplers
to generate translations of unseen input sentences using the top-p decoding strategy!
Don’t worry if you aren’t familiar with KerasHub. This tutorial will start with the basics. Let’s dive right in!
Setup
Before we start implementing the pipeline, let’s import all the libraries we need.
!pip install -q --upgrade rouge-score
!pip install -q --upgrade keras-hub
!pip install -q --upgrade keras # Upgrade to Keras 3.
import keras_hub
import pathlib
import random
import keras
from keras import ops
import tensorflow.data as tf_data
from tensorflow_text.tools.wordpiece_vocab import (
bert_vocab_from_dataset as bert_vocab,
)
Result
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
tensorflow 2.15.1 requires keras<2.16,>=2.15.0, but you have keras 3.3.3 which is incompatible.[31m
Let’s also define our parameters/hyperparameters.
BATCH_SIZE = 64
EPOCHS = 1 # This should be at least 10 for convergence
MAX_SEQUENCE_LENGTH = 40
ENG_VOCAB_SIZE = 15000
SPA_VOCAB_SIZE = 15000
EMBED_DIM = 256
INTERMEDIATE_DIM = 2048
NUM_HEADS = 8
Downloading the data
We’ll be working with an English-to-Spanish translation dataset provided by Anki. Let’s download it:
text_file = keras.utils.get_file(
fname="spa-eng.zip",
origin="http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip",
extract=True,
)
text_file = pathlib.Path(text_file).parent / "spa-eng" / "spa.txt"
Result
Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip
2638744/2638744 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step
Parsing the data
Each line contains an English sentence and its corresponding Spanish sentence. The English sentence is the source sequence and Spanish one is the target sequence. Before adding the text to a list, we convert it to lowercase.
with open(text_file) as f:
lines = f.read().split("\n")[:-1]
text_pairs = []
for line in lines:
eng, spa = line.split("\t")
eng = eng.lower()
spa = spa.lower()
text_pairs.append((eng, spa))
Here’s what our sentence pairs look like:
for _ in range(5):
print(random.choice(text_pairs))
Result
('tom heard that mary had bought a new computer.', 'tom oyó que mary se había comprado un computador nuevo.')
('will you stay at home?', '¿te vas a quedar en casa?')
('where is this train going?', '¿adónde va este tren?')
('tom panicked.', 'tom entró en pánico.')
("we'll help you rescue tom.", 'te ayudaremos a rescatar a tom.')
Now, let’s split the sentence pairs into a training set, a validation set, and a test set.
random.shuffle(text_pairs)
num_val_samples = int(0.15 * len(text_pairs))
num_train_samples = len(text_pairs) - 2 * num_val_samples
train_pairs = text_pairs[:num_train_samples]
val_pairs = text_pairs[num_train_samples : num_train_samples + num_val_samples]
test_pairs = text_pairs[num_train_samples + num_val_samples :]
print(f"{len(text_pairs)} total pairs")
print(f"{len(train_pairs)} training pairs")
print(f"{len(val_pairs)} validation pairs")
print(f"{len(test_pairs)} test pairs")
Result
118964 total pairs
83276 training pairs
17844 validation pairs
17844 test pairs
Tokenizing the data
We’ll define two tokenizers - one for the source language (English), and the other for the target language (Spanish). We’ll be using keras_hub.tokenizers.WordPieceTokenizer
to tokenize the text. keras_hub.tokenizers.WordPieceTokenizer
takes a WordPiece vocabulary and has functions for tokenizing the text, and detokenizing sequences of tokens.
Before we define the two tokenizers, we first need to train them on the dataset we have. The WordPiece tokenization algorithm is a subword tokenization algorithm; training it on a corpus gives us a vocabulary of subwords. A subword tokenizer is a compromise between word tokenizers (word tokenizers need very large vocabularies for good coverage of input words), and character tokenizers (characters don’t really encode meaning like words do). Luckily, KerasHub makes it very simple to train WordPiece on a corpus with the keras_hub.tokenizers.compute_word_piece_vocabulary
utility.
def train_word_piece(text_samples, vocab_size, reserved_tokens):
word_piece_ds = tf_data.Dataset.from_tensor_slices(text_samples)
vocab = keras_hub.tokenizers.compute_word_piece_vocabulary(
word_piece_ds.batch(1000).prefetch(2),
vocabulary_size=vocab_size,
reserved_tokens=reserved_tokens,
)
return vocab
Every vocabulary has a few special, reserved tokens. We have four such tokens:
"[PAD]"
- Padding token. Padding tokens are appended to the input sequence length when the input sequence length is shorter than the maximum sequence length."[UNK]"
- Unknown token."[START]"
- Token that marks the start of the input sequence."[END]"
- Token that marks the end of the input sequence.
reserved_tokens = ["[PAD]", "[UNK]", "[START]", "[END]"]
eng_samples = [text_pair[0] for text_pair in train_pairs]
eng_vocab = train_word_piece(eng_samples, ENG_VOCAB_SIZE, reserved_tokens)
spa_samples = [text_pair[1] for text_pair in train_pairs]
spa_vocab = train_word_piece(spa_samples, SPA_VOCAB_SIZE, reserved_tokens)
Let’s see some tokens!
print("English Tokens: ", eng_vocab[100:110])
print("Spanish Tokens: ", spa_vocab[100:110])
Result
English Tokens: ['at', 'know', 'him', 'there', 'go', 'they', 'her', 'has', 'time', 'will']
Spanish Tokens: ['le', 'para', 'te', 'mary', 'las', 'más', 'al', 'yo', 'tu', 'estoy']
Now, let’s define the tokenizers. We will configure the tokenizers with the the vocabularies trained above.
eng_tokenizer = keras_hub.tokenizers.WordPieceTokenizer(
vocabulary=eng_vocab, lowercase=False
)
spa_tokenizer = keras_hub.tokenizers.WordPieceTokenizer(
vocabulary=spa_vocab, lowercase=False
)
Let’s try and tokenize a sample from our dataset! To verify whether the text has been tokenized correctly, we can also detokenize the list of tokens back to the original text.
eng_input_ex = text_pairs[0][0]
eng_tokens_ex = eng_tokenizer.tokenize(eng_input_ex)
print("English sentence: ", eng_input_ex)
print("Tokens: ", eng_tokens_ex)
print(
"Recovered text after detokenizing: ",
eng_tokenizer.detokenize(eng_tokens_ex),
)
print()
spa_input_ex = text_pairs[0][1]
spa_tokens_ex = spa_tokenizer.tokenize(spa_input_ex)
print("Spanish sentence: ", spa_input_ex)
print("Tokens: ", spa_tokens_ex)
print(
"Recovered text after detokenizing: ",
spa_tokenizer.detokenize(spa_tokens_ex),
)
Result
English sentence: i am leaving the books here.
Tokens: tf.Tensor([ 35 163 931 66 356 119 12], shape=(7,), dtype=int32)
Recovered text after detokenizing: tf.Tensor(b'i am leaving the books here .', shape=(), dtype=string)
Spanish sentence: dejo los libros aquí.
Tokens: tf.Tensor([2962 93 350 122 14], shape=(5,), dtype=int32)
Recovered text after detokenizing: tf.Tensor(b'dejo los libros aqu\xc3\xad .', shape=(), dtype=string)
Format datasets
Next, we’ll format our datasets.
At each training step, the model will seek to predict target words N+1 (and beyond) using the source sentence and the target words 0 to N.
As such, the training dataset will yield a tuple (inputs, targets)
, where:
inputs
is a dictionary with the keysencoder_inputs
anddecoder_inputs
.encoder_inputs
is the tokenized source sentence anddecoder_inputs
is the target sentence “so far”, that is to say, the words 0 to N used to predict word N+1 (and beyond) in the target sentence.target
is the target sentence offset by one step: it provides the next words in the target sentence – what the model will try to predict.
We will add special tokens, "[START]"
and "[END]"
, to the input Spanish sentence after tokenizing the text. We will also pad the input to a fixed length. This can be easily done using keras_hub.layers.StartEndPacker
.
def preprocess_batch(eng, spa):
batch_size = ops.shape(spa)[0]
eng = eng_tokenizer(eng)
spa = spa_tokenizer(spa)
# Pad `eng` to `MAX_SEQUENCE_LENGTH`.
eng_start_end_packer = keras_hub.layers.StartEndPacker(
sequence_length=MAX_SEQUENCE_LENGTH,
pad_value=eng_tokenizer.token_to_id("[PAD]"),
)
eng = eng_start_end_packer(eng)
# Add special tokens (`"[START]"` and `"[END]"`) to `spa` and pad it as well.
spa_start_end_packer = keras_hub.layers.StartEndPacker(
sequence_length=MAX_SEQUENCE_LENGTH + 1,
start_value=spa_tokenizer.token_to_id("[START]"),
end_value=spa_tokenizer.token_to_id("[END]"),
pad_value=spa_tokenizer.token_to_id("[PAD]"),
)
spa = spa_start_end_packer(spa)
return (
{
"encoder_inputs": eng,
"decoder_inputs": spa[:, :-1],
},
spa[:, 1:],
)
def make_dataset(pairs):
eng_texts, spa_texts = zip(*pairs)
eng_texts = list(eng_texts)
spa_texts = list(spa_texts)
dataset = tf_data.Dataset.from_tensor_slices((eng_texts, spa_texts))
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.map(preprocess_batch, num_parallel_calls=tf_data.AUTOTUNE)
return dataset.shuffle(2048).prefetch(16).cache()
train_ds = make_dataset(train_pairs)
val_ds = make_dataset(val_pairs)
Let’s take a quick look at the sequence shapes (we have batches of 64 pairs, and all sequences are 40 steps long):
for inputs, targets in train_ds.take(1):
print(f'inputs["encoder_inputs"].shape: {inputs["encoder_inputs"].shape}')
print(f'inputs["decoder_inputs"].shape: {inputs["decoder_inputs"].shape}')
print(f"targets.shape: {targets.shape}")
Result
inputs["encoder_inputs"].shape: (64, 40)
inputs["decoder_inputs"].shape: (64, 40)
targets.shape: (64, 40)
Building the model
Now, let’s move on to the exciting part - defining our model! We first need an embedding layer, i.e., a vector for every token in our input sequence. This embedding layer can be initialised randomly. We also need a positional embedding layer which encodes the word order in the sequence. The convention is to add these two embeddings. KerasHub has a keras_hub.layers.TokenAndPositionEmbedding
layer which does all of the above steps for us.
Our sequence-to-sequence Transformer consists of a keras_hub.layers.TransformerEncoder
layer and a keras_hub.layers.TransformerDecoder
layer chained together.
The source sequence will be passed to keras_hub.layers.TransformerEncoder
, which will produce a new representation of it. This new representation will then be passed to the keras_hub.layers.TransformerDecoder
, together with the target sequence so far (target words 0 to N). The keras_hub.layers.TransformerDecoder
will then seek to predict the next words in the target sequence (N+1 and beyond).
A key detail that makes this possible is causal masking. The keras_hub.layers.TransformerDecoder
sees the entire sequence at once, and thus we must make sure that it only uses information from target tokens 0 to N when predicting token N+1 (otherwise, it could use information from the future, which would result in a model that cannot be used at inference time). Causal masking is enabled by default in keras_hub.layers.TransformerDecoder
.
We also need to mask the padding tokens ("[PAD]"
). For this, we can set the mask_zero
argument of the keras_hub.layers.TokenAndPositionEmbedding
layer to True. This will then be propagated to all subsequent layers.
# Encoder
encoder_inputs = keras.Input(shape=(None,), name="encoder_inputs")
x = keras_hub.layers.TokenAndPositionEmbedding(
vocabulary_size=ENG_VOCAB_SIZE,
sequence_length=MAX_SEQUENCE_LENGTH,
embedding_dim=EMBED_DIM,
)(encoder_inputs)
encoder_outputs = keras_hub.layers.TransformerEncoder(
intermediate_dim=INTERMEDIATE_DIM, num_heads=NUM_HEADS
)(inputs=x)
encoder = keras.Model(encoder_inputs, encoder_outputs)
# Decoder
decoder_inputs = keras.Input(shape=(None,), name="decoder_inputs")
encoded_seq_inputs = keras.Input(shape=(None, EMBED_DIM), name="decoder_state_inputs")
x = keras_hub.layers.TokenAndPositionEmbedding(
vocabulary_size=SPA_VOCAB_SIZE,
sequence_length=MAX_SEQUENCE_LENGTH,
embedding_dim=EMBED_DIM,
)(decoder_inputs)
x = keras_hub.layers.TransformerDecoder(
intermediate_dim=INTERMEDIATE_DIM, num_heads=NUM_HEADS
)(decoder_sequence=x, encoder_sequence=encoded_seq_inputs)
x = keras.layers.Dropout(0.5)(x)
decoder_outputs = keras.layers.Dense(SPA_VOCAB_SIZE, activation="softmax")(x)
decoder = keras.Model(
[
decoder_inputs,
encoded_seq_inputs,
],
decoder_outputs,
)
decoder_outputs = decoder([decoder_inputs, encoder_outputs])
transformer = keras.Model(
[encoder_inputs, decoder_inputs],
decoder_outputs,
name="transformer",
)
Training our model
We’ll use accuracy as a quick way to monitor training progress on the validation data. Note that machine translation typically uses BLEU scores as well as other metrics, rather than accuracy. However, in order to use metrics like ROUGE, BLEU, etc. we will have decode the probabilities and generate the text. Text generation is computationally expensive, and performing this during training is not recommended.
Here we only train for 1 epoch, but to get the model to actually converge you should train for at least 10 epochs.
transformer.summary()
transformer.compile(
"rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
transformer.fit(train_ds, epochs=EPOCHS, validation_data=val_ds)
Result
Model: "transformer"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃ Connected to ┃
┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩
│ encoder_inputs │ (None, None) │ 0 │ - │
│ (InputLayer) │ │ │ │
├─────────────────────┼───────────────────┼────────────┼───────────────────┤
│ token_and_position… │ (None, None, 256) │ 3,850,240 │ encoder_inputs[0… │
│ (TokenAndPositionE… │ │ │ │
├─────────────────────┼───────────────────┼────────────┼───────────────────┤
│ decoder_inputs │ (None, None) │ 0 │ - │
│ (InputLayer) │ │ │ │
├─────────────────────┼───────────────────┼────────────┼───────────────────┤
│ transformer_encoder │ (None, None, 256) │ 1,315,072 │ token_and_positi… │
│ (TransformerEncode… │ │ │ │
├─────────────────────┼───────────────────┼────────────┼───────────────────┤
│ functional_3 │ (None, None, │ 9,283,992 │ decoder_inputs[0… │
│ (Functional) │ 15000) │ │ transformer_enco… │
└─────────────────────┴───────────────────┴────────────┴───────────────────┘
Total params: 14,449,304 (55.12 MB)
Trainable params: 14,449,304 (55.12 MB)
Non-trainable params: 0 (0.00 B)
1302/1302 ━━━━━━━━━━━━━━━━━━━━ 1701s 1s/step - accuracy: 0.8168 - loss: 1.4819 - val_accuracy: 0.8650 - val_loss: 0.8129
<keras.src.callbacks.history.History at 0x7efdd7ee6a50>
Decoding test sentences (qualitative analysis)
Finally, let’s demonstrate how to translate brand new English sentences. We simply feed into the model the tokenized English sentence as well as the target token "[START]"
. The model outputs probabilities of the next token. We then we repeatedly generated the next token conditioned on the tokens generated so far, until we hit the token "[END]"
.
For decoding, we will use the keras_hub.samplers
module from KerasHub. Greedy Decoding is a text decoding method which outputs the most likely next token at each time step, i.e., the token with the highest probability.
def decode_sequences(input_sentences):
batch_size = 1
# Tokenize the encoder input.
encoder_input_tokens = ops.convert_to_tensor(eng_tokenizer(input_sentences))
if len(encoder_input_tokens[0]) < MAX_SEQUENCE_LENGTH:
pads = ops.full((1, MAX_SEQUENCE_LENGTH - len(encoder_input_tokens[0])), 0)
encoder_input_tokens = ops.concatenate(
[encoder_input_tokens.to_tensor(), pads], 1
)
# Define a function that outputs the next token's probability given the
# input sequence.
def next(prompt, cache, index):
logits = transformer([encoder_input_tokens, prompt])[:, index - 1, :]
# Ignore hidden states for now; only needed for contrastive search.
hidden_states = None
return logits, hidden_states, cache
# Build a prompt of length 40 with a start token and padding tokens.
length = 40
start = ops.full((batch_size, 1), spa_tokenizer.token_to_id("[START]"))
pad = ops.full((batch_size, length - 1), spa_tokenizer.token_to_id("[PAD]"))
prompt = ops.concatenate((start, pad), axis=-1)
generated_tokens = keras_hub.samplers.GreedySampler()(
next,
prompt,
stop_token_ids=[spa_tokenizer.token_to_id("[END]")],
index=1, # Start sampling after start token.
)
generated_sentences = spa_tokenizer.detokenize(generated_tokens)
return generated_sentences
test_eng_texts = [pair[0] for pair in test_pairs]
for i in range(2):
input_sentence = random.choice(test_eng_texts)
translated = decode_sequences([input_sentence])
translated = translated.numpy()[0].decode("utf-8")
translated = (
translated.replace("[PAD]", "")
.replace("[START]", "")
.replace("[END]", "")
.strip()
)
print(f"** Example {i} **")
print(input_sentence)
print(translated)
print()
Result
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1714519073.816969 34774 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.
** Example 0 **
i got the ticket free of charge.
me pregunto la comprome .
** Example 1 **
i think maybe that's all you have to do.
creo que tom le dije que hacer eso .
Evaluating our model (quantitative analysis)
There are many metrics which are used for text generation tasks. Here, to evaluate translations generated by our model, let’s compute the ROUGE-1 and ROUGE-2 scores. Essentially, ROUGE-N is a score based on the number of common n-grams between the reference text and the generated text. ROUGE-1 and ROUGE-2 use the number of common unigrams and bigrams, respectively.
We will calculate the score over 30 test samples (since decoding is an expensive process).
rouge_1 = keras_hub.metrics.RougeN(order=1)
rouge_2 = keras_hub.metrics.RougeN(order=2)
for test_pair in test_pairs[:30]:
input_sentence = test_pair[0]
reference_sentence = test_pair[1]
translated_sentence = decode_sequences([input_sentence])
translated_sentence = translated_sentence.numpy()[0].decode("utf-8")
translated_sentence = (
translated_sentence.replace("[PAD]", "")
.replace("[START]", "")
.replace("[END]", "")
.strip()
)
rouge_1(reference_sentence, translated_sentence)
rouge_2(reference_sentence, translated_sentence)
print("ROUGE-1 Score: ", rouge_1.result())
print("ROUGE-2 Score: ", rouge_2.result())
Result
ROUGE-1 Score: {'precision': <tf.Tensor: shape=(), dtype=float32, numpy=0.30989552>, 'recall': <tf.Tensor: shape=(), dtype=float32, numpy=0.37136248>, 'f1_score': <tf.Tensor: shape=(), dtype=float32, numpy=0.33032653>}
ROUGE-2 Score: {'precision': <tf.Tensor: shape=(), dtype=float32, numpy=0.08999339>, 'recall': <tf.Tensor: shape=(), dtype=float32, numpy=0.09524643>, 'f1_score': <tf.Tensor: shape=(), dtype=float32, numpy=0.08855649>}
After 10 epochs, the scores are as follows:
ROUGE-1 | ROUGE-2 | |
---|---|---|
Precision | 0.568 | 0.374 |
Recall | 0.615 | 0.394 |
F1 Score | 0.579 | 0.381 |