Packaging Keras models for wide distribution using Functional Subclassing
- Original Link : https://keras.io/examples/keras_recipes/packaging_keras_models_for_wide_distribution/
- Last Checked at : 2024-11-24
Author: Martin Görner
Date created: 2023/12/13
Last modified: 2023/12/13
Description: When sharing your deep learning models, package them using the Functional Subclassing pattern.
Introduction
Keras is the ideal framework for sharing your cutting-edge deep learning models, in a library of pre-trained (or not) models. Millions of ML engineers are fluent in the familiar Keras API, making your models accessible to a global community, whatever their preferred backend (Jax, PyTorch or TensorFlow).
One of the benefits of the Keras API is that it lets users programmatically inspect or edit a model, a feature that is necessary when creating new architectures or workflows based on a pre-trained model.
When distributing models, the Keras team recommends packaging them using the Functional Subclassing pattern. Models implemented in this way combine two benefits:
They can be instantiated in the normal pythonic way:
model = model_collection_xyz.AmazingModel()
They are Keras functional models which means that they have a programmatically accessible graph of layers, for introspection or model surgery.
This guide explains how to use the Functional Subclassing pattern, and showcases its benefits for programmatic model introspection and model surgery. It also shows two other best practices for sharable Keras models: configuring models for the widest range of supported inputs, for example images of various sizes, and using dictionary inputs for clarity in more complex models.
Setup
import keras
import tensorflow as tf # only for tf.data
print("Keras version", keras.version())
print("Keras is running on", keras.config.backend())
Result
Keras version 3.0.1
Keras is running on tensorflow
Dataset
Let’s load an MNIST dataset so that we have something to train with.
# tf.data is a great API for putting together a data stream.
# It works whether you use the TensorFlow, PyTorch or Jax backend,
# as long as you use it in the data stream only and not inside of a model.
BATCH_SIZE = 256
(x_train, train_labels), (x_test, test_labels) = keras.datasets.mnist.load_data()
train_data = tf.data.Dataset.from_tensor_slices((x_train, train_labels))
train_data = train_data.map(
lambda x, y: (tf.expand_dims(x, axis=-1), y)
) # 1-channel monochrome
train_data = train_data.batch(BATCH_SIZE)
train_data = train_data.cache()
train_data = train_data.shuffle(5000, reshuffle_each_iteration=True)
train_data = train_data.repeat()
test_data = tf.data.Dataset.from_tensor_slices((x_test, test_labels))
test_data = test_data.map(
lambda x, y: (tf.expand_dims(x, axis=-1), y)
) # 1-channel monochrome
test_data = test_data.batch(10000)
test_data = test_data.cache()
STEPS_PER_EPOCH = len(train_labels) // BATCH_SIZE
EPOCHS = 5
Functional Subclassing Model
The model is wrapped in a class so that end users can instantiate it normally by calling the constructor MnistModel()
rather than calling a factory function.
class MnistModel(keras.Model):
def __init__(self, **kwargs):
# Keras Functional model definition. This could have used Sequential as
# well. Sequential is just syntactic sugar for simple functional models.
# 1-channel monochrome input
inputs = keras.layers.Input(shape=(None, None, 1), dtype="uint8")
# pixel format conversion from uint8 to float32
y = keras.layers.Rescaling(1 / 255.0)(inputs)
# 3 convolutional layers
y = keras.layers.Conv2D(
filters=16, kernel_size=3, padding="same", activation="relu"
)(y)
y = keras.layers.Conv2D(
filters=32, kernel_size=6, padding="same", activation="relu", strides=2
)(y)
y = keras.layers.Conv2D(
filters=48, kernel_size=6, padding="same", activation="relu", strides=2
)(y)
# 2 dense layers
y = keras.layers.GlobalAveragePooling2D()(y)
y = keras.layers.Dense(48, activation="relu")(y)
y = keras.layers.Dropout(0.4)(y)
outputs = keras.layers.Dense(
10, activation="softmax", name="classification_head" # 10 classes
)(y)
# A Keras Functional model is created by calling keras.Model(inputs, outputs)
super().__init__(inputs=inputs, outputs=outputs, **kwargs)
Let’s instantiate and train this model.
model = MnistModel()
model.compile(
optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["sparse_categorical_accuracy"],
)
history = model.fit(
train_data,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
validation_data=test_data,
)
Result
Epoch 1/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 9s 33ms/step - loss: 1.8916 - sparse_categorical_accuracy: 0.2933 - val_loss: 0.4278 - val_sparse_categorical_accuracy: 0.8864
Epoch 2/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - loss: 0.5723 - sparse_categorical_accuracy: 0.8201 - val_loss: 0.2703 - val_sparse_categorical_accuracy: 0.9248
Epoch 3/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - loss: 0.4063 - sparse_categorical_accuracy: 0.8772 - val_loss: 0.2010 - val_sparse_categorical_accuracy: 0.9400
Epoch 4/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - loss: 0.3391 - sparse_categorical_accuracy: 0.8996 - val_loss: 0.1869 - val_sparse_categorical_accuracy: 0.9427
Epoch 5/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - loss: 0.2989 - sparse_categorical_accuracy: 0.9120 - val_loss: 0.1513 - val_sparse_categorical_accuracy: 0.9557
Unconstrained inputs
Notice, in the model definition above, that the input is specified with undefined dimensions: Input(shape=(None, None, 1)
This allows the model to accept any image size as an input. However, this only works if the loosely defined shape can be propagated through all the layers and still determine the size of all weights.
So if you have a model architecture that can handle different input sizes with the same weights (like here), then your users will be able to instantiate it without parameters:
model = MnistModel()
If on the other hand, the model must provision different weights for different input sizes, you will have to ask your users to specify the size in the constructor:
model = ModelXYZ(input_size=...)
Model introspection
Keras maintains a programmatically accessible graph of layers for every model. It can be used for introspection and is accessed through the model.layers
or layer.layers
attribute. The utility function model.summary()
also uses this mechanism internally.
model = MnistModel()
# Model summary works
model.summary()
# Recursively walking the layer graph works as well
def walk_layers(layer):
if hasattr(layer, "layers"):
for layer in layer.layers:
walk_layers(layer)
else:
print(layer.name)
print("\nWalking model layers:\n")
walk_layers(model)
Result
Model: "mnist_model_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ input_layer_1 (InputLayer) │ (None, None, None, 1) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ rescaling_1 (Rescaling) │ (None, None, None, 1) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_3 (Conv2D) │ (None, None, None, 16) │ 160 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_4 (Conv2D) │ (None, None, None, 32) │ 18,464 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_5 (Conv2D) │ (None, None, None, 48) │ 55,344 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ global_average_pooling2d_1 │ (None, 48) │ 0 │
│ (GlobalAveragePooling2D) │ │ │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_1 (Dense) │ (None, 48) │ 2,352 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout_1 (Dropout) │ (None, 48) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ classification_head (Dense) │ (None, 10) │ 490 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
Total params: 76,810 (300.04 KB)
Trainable params: 76,810 (300.04 KB)
Non-trainable params: 0 (0.00 B)
Walking model layers:
input_layer_1
rescaling_1
conv2d_3
conv2d_4
conv2d_5
global_average_pooling2d_1
dense_1
dropout_1
classification_head
Model surgery
End users might want to instantiate the model from your library but modify it before use. Functional models have a programmatically accessible graph of layers. Edits are possible by slicing and splicing the graph and creating a new functional model.
The alternative is to fork the model code and make the modifications but that forces users to then maintain their fork indefinitely.
Example: instantiate the model but change the classification head to do a binary classification, “0” or “not 0”, instead of the original 10-way digits classification.
model = MnistModel()
input = model.input
# cut before the classification head
y = model.get_layer("classification_head").input
# add a new classification head
output = keras.layers.Dense(
1, # single class for binary classification
activation="sigmoid",
name="binary_classification_head",
)(y)
# create a new functional model
binary_model = keras.Model(input, output)
binary_model.summary()
Result
Model: "functional_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ input_layer_2 (InputLayer) │ (None, None, None, 1) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ rescaling_2 (Rescaling) │ (None, None, None, 1) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_6 (Conv2D) │ (None, None, None, 16) │ 160 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_7 (Conv2D) │ (None, None, None, 32) │ 18,464 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_8 (Conv2D) │ (None, None, None, 48) │ 55,344 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ global_average_pooling2d_2 │ (None, 48) │ 0 │
│ (GlobalAveragePooling2D) │ │ │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_2 (Dense) │ (None, 48) │ 2,352 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout_2 (Dropout) │ (None, 48) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ binary_classification_head │ (None, 1) │ 49 │
│ (Dense) │ │ │
└─────────────────────────────────┴───────────────────────────┴────────────┘
Total params: 76,369 (298.32 KB)
Trainable params: 76,369 (298.32 KB)
Non-trainable params: 0 (0.00 B)
We can now train the new model as a binary classifier.
# new dataset with 0 / 1 labels (1 = digit '0', 0 = all other digits)
bin_train_data = train_data.map(
lambda x, y: (x, tf.cast(tf.math.equal(y, tf.zeros_like(y)), dtype=tf.uint8))
)
bin_test_data = test_data.map(
lambda x, y: (x, tf.cast(tf.math.equal(y, tf.zeros_like(y)), dtype=tf.uint8))
)
# appropriate loss and metric for binary classification
binary_model.compile(
optimizer="adam", loss="binary_crossentropy", metrics=["binary_accuracy"]
)
history = binary_model.fit(
bin_train_data,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
validation_data=bin_test_data,
)
Result
Epoch 1/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 9s 33ms/step - binary_accuracy: 0.8926 - loss: 0.3635 - val_binary_accuracy: 0.9235 - val_loss: 0.1777
Epoch 2/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - binary_accuracy: 0.9411 - loss: 0.1620 - val_binary_accuracy: 0.9766 - val_loss: 0.0748
Epoch 3/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - binary_accuracy: 0.9751 - loss: 0.0794 - val_binary_accuracy: 0.9884 - val_loss: 0.0414
Epoch 4/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - binary_accuracy: 0.9848 - loss: 0.0480 - val_binary_accuracy: 0.9915 - val_loss: 0.0292
Epoch 5/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 31ms/step - binary_accuracy: 0.9910 - loss: 0.0326 - val_binary_accuracy: 0.9917 - val_loss: 0.0286
Model with dictionary inputs
In more complex models, with multiple inputs, structuring the inputs as a dictionary can improve readability and usability. This is straightforward to do with a functional model:
class MnistDictModel(keras.Model):
def __init__(self, **kwargs):
#
# The input is a dictionary
#
inputs = {
"image": keras.layers.Input(
shape=(None, None, 1), # 1-channel monochrome
dtype="uint8",
name="image",
)
}
# pixel format conversion from uint8 to float32
y = keras.layers.Rescaling(1 / 255.0)(inputs["image"])
# 3 conv layers
y = keras.layers.Conv2D(
filters=16, kernel_size=3, padding="same", activation="relu"
)(y)
y = keras.layers.Conv2D(
filters=32, kernel_size=6, padding="same", activation="relu", strides=2
)(y)
y = keras.layers.Conv2D(
filters=48, kernel_size=6, padding="same", activation="relu", strides=2
)(y)
# 2 dense layers
y = keras.layers.GlobalAveragePooling2D()(y)
y = keras.layers.Dense(48, activation="relu")(y)
y = keras.layers.Dropout(0.4)(y)
outputs = keras.layers.Dense(
10, activation="softmax", name="classification_head" # 10 classes
)(y)
# A Keras Functional model is created by calling keras.Model(inputs, outputs)
super().__init__(inputs=inputs, outputs=outputs, **kwargs)
We can now train the model on inputs structured as a dictionary.
model = MnistDictModel()
# reformat the dataset as a dictionary
dict_train_data = train_data.map(lambda x, y: ({"image": x}, y))
dict_test_data = test_data.map(lambda x, y: ({"image": x}, y))
model.compile(
optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["sparse_categorical_accuracy"],
)
history = model.fit(
dict_train_data,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
validation_data=dict_test_data,
)
Result
Epoch 1/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 9s 34ms/step - loss: 1.8702 - sparse_categorical_accuracy: 0.3175 - val_loss: 0.4505 - val_sparse_categorical_accuracy: 0.8779
Epoch 2/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 8s 32ms/step - loss: 0.5991 - sparse_categorical_accuracy: 0.8131 - val_loss: 0.2582 - val_sparse_categorical_accuracy: 0.9245
Epoch 3/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 7s 32ms/step - loss: 0.3916 - sparse_categorical_accuracy: 0.8846 - val_loss: 0.1938 - val_sparse_categorical_accuracy: 0.9422
Epoch 4/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 8s 33ms/step - loss: 0.3109 - sparse_categorical_accuracy: 0.9089 - val_loss: 0.1450 - val_sparse_categorical_accuracy: 0.9566
Epoch 5/5
234/234 ━━━━━━━━━━━━━━━━━━━━ 8s 32ms/step - loss: 0.2775 - sparse_categorical_accuracy: 0.9197 - val_loss: 0.1316 - val_sparse_categorical_accuracy: 0.9608