Graph attention network (GAT) for node classification
- Original Link : https://keras.io/examples/graph/gat_node_classification/
- Last Checked at : 2024-11-24
Author: akensert
Date created: 2021/09/13
Last modified: 2021/12/26
Description: An implementation of a Graph Attention Network (GAT) for node classification.
Introduction
Graph neural networks is the preferred neural network architecture for processing data structured as graphs (for example, social networks or molecule structures), yielding better results than fully-connected networks or convolutional networks.
In this tutorial, we will implement a specific graph neural network known as a Graph Attention Network (GAT) to predict labels of scientific papers based on what type of papers cite them (using the Cora dataset).
References
For more information on GAT, see the original paper Graph Attention Networks as well as DGL’s Graph Attention Networks documentation.
Import packages
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
import pandas as pd
import os
import warnings
warnings.filterwarnings("ignore")
pd.set_option("display.max_columns", 6)
pd.set_option("display.max_rows", 6)
np.random.seed(2)
Obtain the dataset
The preparation of the Cora dataset follows that of the Node classification with Graph Neural Networks tutorial. Refer to this tutorial for more details on the dataset and exploratory data analysis. In brief, the Cora dataset consists of two files: cora.cites
which contains directed links (citations) between papers; and cora.content
which contains features of the corresponding papers and one of seven labels (the subject of the paper).
zip_file = keras.utils.get_file(
fname="cora.tgz",
origin="https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz",
extract=True,
)
data_dir = os.path.join(os.path.dirname(zip_file), "cora")
citations = pd.read_csv(
os.path.join(data_dir, "cora.cites"),
sep="\t",
header=None,
names=["target", "source"],
)
papers = pd.read_csv(
os.path.join(data_dir, "cora.content"),
sep="\t",
header=None,
names=["paper_id"] + [f"term_{idx}" for idx in range(1433)] + ["subject"],
)
class_values = sorted(papers["subject"].unique())
class_idx = {name: id for id, name in enumerate(class_values)}
paper_idx = {name: idx for idx, name in enumerate(sorted(papers["paper_id"].unique()))}
papers["paper_id"] = papers["paper_id"].apply(lambda name: paper_idx[name])
citations["source"] = citations["source"].apply(lambda name: paper_idx[name])
citations["target"] = citations["target"].apply(lambda name: paper_idx[name])
papers["subject"] = papers["subject"].apply(lambda value: class_idx[value])
print(citations)
print(papers)
Result
target source
0 0 21
1 0 905
2 0 906
... ... ...
5426 1874 2586
5427 1876 1874
5428 1897 2707
[5429 rows x 2 columns]
paper_id term_0 term_1 ... term_1431 term_1432 subject
0 462 0 0 ... 0 0 2
1 1911 0 0 ... 0 0 5
2 2002 0 0 ... 0 0 4
... ... ... ... ... ... ... ...
2705 2372 0 0 ... 0 0 1
2706 955 0 0 ... 0 0 0
2707 376 0 0 ... 0 0 2
[2708 rows x 1435 columns]
Split the dataset
# Obtain random indices
random_indices = np.random.permutation(range(papers.shape[0]))
# 50/50 split
train_data = papers.iloc[random_indices[: len(random_indices) // 2]]
test_data = papers.iloc[random_indices[len(random_indices) // 2 :]]
Prepare the graph data
# Obtain paper indices which will be used to gather node states
# from the graph later on when training the model
train_indices = train_data["paper_id"].to_numpy()
test_indices = test_data["paper_id"].to_numpy()
# Obtain ground truth labels corresponding to each paper_id
train_labels = train_data["subject"].to_numpy()
test_labels = test_data["subject"].to_numpy()
# Define graph, namely an edge tensor and a node feature tensor
edges = tf.convert_to_tensor(citations[["target", "source"]])
node_states = tf.convert_to_tensor(papers.sort_values("paper_id").iloc[:, 1:-1])
# Print shapes of the graph
print("Edges shape:\t\t", edges.shape)
print("Node features shape:", node_states.shape)
Result
Edges shape: (5429, 2)
Node features shape: (2708, 1433)
Build the model
GAT takes as input a graph (namely an edge tensor and a node feature tensor) and outputs [updated] node states. The node states are, for each target node, neighborhood aggregated information of N-hops (where N is decided by the number of layers of the GAT). Importantly, in contrast to the graph convolutional network (GCN) the GAT makes use of attention mechanisms to aggregate information from neighboring nodes (or source nodes). In other words, instead of simply averaging/summing node states from source nodes (source papers) to the target node (target papers), GAT first applies normalized attention scores to each source node state and then sums.
(Multi-head) graph attention layer
The GAT model implements multi-head graph attention layers. The MultiHeadGraphAttention
layer is simply a concatenation (or averaging) of multiple graph attention layers (GraphAttention
), each with separate learnable weights W
. The GraphAttention
layer does the following:
Consider inputs node states h^{l}
which are linearly transformed by W^{l}
, resulting in z^{l}
.
For each target node:
- Computes pair-wise attention scores
a^{l}^{T}(z^{l}_{i}||z^{l}_{j})
for allj
, resulting ine_{ij}
(for allj
).||
denotes a concatenation,_{i}
corresponds to the target node, and_{j}
corresponds to a given 1-hop neighbor/source node. - Normalizes
e_{ij}
via softmax, so as the sum of incoming edges’ attention scores to the target node (sum_{k}{e_{norm}_{ik}}
) will add up to 1. - Applies attention scores
e_{norm}_{ij}
toz_{j}
and adds it to the new target node stateh^{l+1}_{i}
, for allj
.
class GraphAttention(layers.Layer):
def __init__(
self,
units,
kernel_initializer="glorot_uniform",
kernel_regularizer=None,
**kwargs,
):
super().__init__(**kwargs)
self.units = units
self.kernel_initializer = keras.initializers.get(kernel_initializer)
self.kernel_regularizer = keras.regularizers.get(kernel_regularizer)
def build(self, input_shape):
self.kernel = self.add_weight(
shape=(input_shape[0][-1], self.units),
trainable=True,
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
name="kernel",
)
self.kernel_attention = self.add_weight(
shape=(self.units * 2, 1),
trainable=True,
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
name="kernel_attention",
)
self.built = True
def call(self, inputs):
node_states, edges = inputs
# Linearly transform node states
node_states_transformed = tf.matmul(node_states, self.kernel)
# (1) Compute pair-wise attention scores
node_states_expanded = tf.gather(node_states_transformed, edges)
node_states_expanded = tf.reshape(
node_states_expanded, (tf.shape(edges)[0], -1)
)
attention_scores = tf.nn.leaky_relu(
tf.matmul(node_states_expanded, self.kernel_attention)
)
attention_scores = tf.squeeze(attention_scores, -1)
# (2) Normalize attention scores
attention_scores = tf.math.exp(tf.clip_by_value(attention_scores, -2, 2))
attention_scores_sum = tf.math.unsorted_segment_sum(
data=attention_scores,
segment_ids=edges[:, 0],
num_segments=tf.reduce_max(edges[:, 0]) + 1,
)
attention_scores_sum = tf.repeat(
attention_scores_sum, tf.math.bincount(tf.cast(edges[:, 0], "int32"))
)
attention_scores_norm = attention_scores / attention_scores_sum
# (3) Gather node states of neighbors, apply attention scores and aggregate
node_states_neighbors = tf.gather(node_states_transformed, edges[:, 1])
out = tf.math.unsorted_segment_sum(
data=node_states_neighbors * attention_scores_norm[:, tf.newaxis],
segment_ids=edges[:, 0],
num_segments=tf.shape(node_states)[0],
)
return out
class MultiHeadGraphAttention(layers.Layer):
def __init__(self, units, num_heads=8, merge_type="concat", **kwargs):
super().__init__(**kwargs)
self.num_heads = num_heads
self.merge_type = merge_type
self.attention_layers = [GraphAttention(units) for _ in range(num_heads)]
def call(self, inputs):
atom_features, pair_indices = inputs
# Obtain outputs from each attention head
outputs = [
attention_layer([atom_features, pair_indices])
for attention_layer in self.attention_layers
]
# Concatenate or average the node states from each head
if self.merge_type == "concat":
outputs = tf.concat(outputs, axis=-1)
else:
outputs = tf.reduce_mean(tf.stack(outputs, axis=-1), axis=-1)
# Activate and return node states
return tf.nn.relu(outputs)
Implement training logic with custom train_step
, test_step
, and predict_step
methods
Notice, the GAT model operates on the entire graph (namely, node_states
and edges
) in all phases (training, validation and testing). Hence, node_states
and edges
are passed to the constructor of the keras.Model
and used as attributes. The difference between the phases are the indices (and labels), which gathers certain outputs (tf.gather(outputs, indices)
).
class GraphAttentionNetwork(keras.Model):
def __init__(
self,
node_states,
edges,
hidden_units,
num_heads,
num_layers,
output_dim,
**kwargs,
):
super().__init__(**kwargs)
self.node_states = node_states
self.edges = edges
self.preprocess = layers.Dense(hidden_units * num_heads, activation="relu")
self.attention_layers = [
MultiHeadGraphAttention(hidden_units, num_heads) for _ in range(num_layers)
]
self.output_layer = layers.Dense(output_dim)
def call(self, inputs):
node_states, edges = inputs
x = self.preprocess(node_states)
for attention_layer in self.attention_layers:
x = attention_layer([x, edges]) + x
outputs = self.output_layer(x)
return outputs
def train_step(self, data):
indices, labels = data
with tf.GradientTape() as tape:
# Forward pass
outputs = self([self.node_states, self.edges])
# Compute loss
loss = self.compiled_loss(labels, tf.gather(outputs, indices))
# Compute gradients
grads = tape.gradient(loss, self.trainable_weights)
# Apply gradients (update weights)
optimizer.apply_gradients(zip(grads, self.trainable_weights))
# Update metric(s)
self.compiled_metrics.update_state(labels, tf.gather(outputs, indices))
return {m.name: m.result() for m in self.metrics}
def predict_step(self, data):
indices = data
# Forward pass
outputs = self([self.node_states, self.edges])
# Compute probabilities
return tf.nn.softmax(tf.gather(outputs, indices))
def test_step(self, data):
indices, labels = data
# Forward pass
outputs = self([self.node_states, self.edges])
# Compute loss
loss = self.compiled_loss(labels, tf.gather(outputs, indices))
# Update metric(s)
self.compiled_metrics.update_state(labels, tf.gather(outputs, indices))
return {m.name: m.result() for m in self.metrics}
Train and evaluate
# Define hyper-parameters
HIDDEN_UNITS = 100
NUM_HEADS = 8
NUM_LAYERS = 3
OUTPUT_DIM = len(class_values)
NUM_EPOCHS = 100
BATCH_SIZE = 256
VALIDATION_SPLIT = 0.1
LEARNING_RATE = 3e-1
MOMENTUM = 0.9
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = keras.optimizers.SGD(LEARNING_RATE, momentum=MOMENTUM)
accuracy_fn = keras.metrics.SparseCategoricalAccuracy(name="acc")
early_stopping = keras.callbacks.EarlyStopping(
monitor="val_acc", min_delta=1e-5, patience=5, restore_best_weights=True
)
# Build model
gat_model = GraphAttentionNetwork(
node_states, edges, HIDDEN_UNITS, NUM_HEADS, NUM_LAYERS, OUTPUT_DIM
)
# Compile model
gat_model.compile(loss=loss_fn, optimizer=optimizer, metrics=[accuracy_fn])
gat_model.fit(
x=train_indices,
y=train_labels,
validation_split=VALIDATION_SPLIT,
batch_size=BATCH_SIZE,
epochs=NUM_EPOCHS,
callbacks=[early_stopping],
verbose=2,
)
_, test_accuracy = gat_model.evaluate(x=test_indices, y=test_labels, verbose=0)
print("--" * 38 + f"\nTest Accuracy {test_accuracy*100:.1f}%")
Result
Epoch 1/100
5/5 - 26s - loss: 1.8418 - acc: 0.2980 - val_loss: 1.5117 - val_acc: 0.4044 - 26s/epoch - 5s/step
Epoch 2/100
5/5 - 6s - loss: 1.2422 - acc: 0.5640 - val_loss: 1.0407 - val_acc: 0.6471 - 6s/epoch - 1s/step
Epoch 3/100
5/5 - 5s - loss: 0.7092 - acc: 0.7906 - val_loss: 0.8201 - val_acc: 0.7868 - 5s/epoch - 996ms/step
Epoch 4/100
5/5 - 5s - loss: 0.4768 - acc: 0.8604 - val_loss: 0.7451 - val_acc: 0.8088 - 5s/epoch - 934ms/step
Epoch 5/100
5/5 - 5s - loss: 0.2641 - acc: 0.9294 - val_loss: 0.7499 - val_acc: 0.8088 - 5s/epoch - 945ms/step
Epoch 6/100
5/5 - 5s - loss: 0.1487 - acc: 0.9663 - val_loss: 0.6803 - val_acc: 0.8382 - 5s/epoch - 967ms/step
Epoch 7/100
5/5 - 5s - loss: 0.0970 - acc: 0.9811 - val_loss: 0.6688 - val_acc: 0.8088 - 5s/epoch - 960ms/step
Epoch 8/100
5/5 - 5s - loss: 0.0597 - acc: 0.9934 - val_loss: 0.7295 - val_acc: 0.8162 - 5s/epoch - 981ms/step
Epoch 9/100
5/5 - 5s - loss: 0.0398 - acc: 0.9967 - val_loss: 0.7551 - val_acc: 0.8309 - 5s/epoch - 991ms/step
Epoch 10/100
5/5 - 5s - loss: 0.0312 - acc: 0.9984 - val_loss: 0.7666 - val_acc: 0.8309 - 5s/epoch - 987ms/step
Epoch 11/100
5/5 - 5s - loss: 0.0219 - acc: 0.9992 - val_loss: 0.7726 - val_acc: 0.8309 - 5s/epoch - 1s/step
----------------------------------------------------------------------------
Test Accuracy 76.5%
Predict (probabilities)
test_probs = gat_model.predict(x=test_indices)
mapping = {v: k for (k, v) in class_idx.items()}
for i, (probs, label) in enumerate(zip(test_probs[:10], test_labels[:10])):
print(f"Example {i+1}: {mapping[label]}")
for j, c in zip(probs, class_idx.keys()):
print(f"\tProbability of {c: <24} = {j*100:7.3f}%")
print("---" * 20)
Result
Example 1: Probabilistic_Methods
Probability of Case_Based = 0.919%
Probability of Genetic_Algorithms = 0.180%
Probability of Neural_Networks = 37.896%
Probability of Probabilistic_Methods = 59.801%
Probability of Reinforcement_Learning = 0.705%
Probability of Rule_Learning = 0.044%
Probability of Theory = 0.454%
------------------------------------------------------------
Example 2: Genetic_Algorithms
Probability of Case_Based = 0.005%
Probability of Genetic_Algorithms = 99.993%
Probability of Neural_Networks = 0.001%
Probability of Probabilistic_Methods = 0.000%
Probability of Reinforcement_Learning = 0.000%
Probability of Rule_Learning = 0.000%
Probability of Theory = 0.000%
------------------------------------------------------------
Example 3: Theory
Probability of Case_Based = 8.151%
Probability of Genetic_Algorithms = 1.021%
Probability of Neural_Networks = 0.569%
Probability of Probabilistic_Methods = 40.220%
Probability of Reinforcement_Learning = 0.792%
Probability of Rule_Learning = 6.910%
Probability of Theory = 42.337%
------------------------------------------------------------
Example 4: Neural_Networks
Probability of Case_Based = 0.097%
Probability of Genetic_Algorithms = 0.026%
Probability of Neural_Networks = 93.539%
Probability of Probabilistic_Methods = 6.206%
Probability of Reinforcement_Learning = 0.028%
Probability of Rule_Learning = 0.010%
Probability of Theory = 0.094%
------------------------------------------------------------
Example 5: Theory
Probability of Case_Based = 25.259%
Probability of Genetic_Algorithms = 4.381%
Probability of Neural_Networks = 11.776%
Probability of Probabilistic_Methods = 15.053%
Probability of Reinforcement_Learning = 1.571%
Probability of Rule_Learning = 23.589%
Probability of Theory = 18.370%
------------------------------------------------------------
Example 6: Genetic_Algorithms
Probability of Case_Based = 0.000%
Probability of Genetic_Algorithms = 100.000%
Probability of Neural_Networks = 0.000%
Probability of Probabilistic_Methods = 0.000%
Probability of Reinforcement_Learning = 0.000%
Probability of Rule_Learning = 0.000%
Probability of Theory = 0.000%
------------------------------------------------------------
Example 7: Neural_Networks
Probability of Case_Based = 0.296%
Probability of Genetic_Algorithms = 0.291%
Probability of Neural_Networks = 93.419%
Probability of Probabilistic_Methods = 5.696%
Probability of Reinforcement_Learning = 0.050%
Probability of Rule_Learning = 0.072%
Probability of Theory = 0.177%
------------------------------------------------------------
Example 8: Genetic_Algorithms
Probability of Case_Based = 0.000%
Probability of Genetic_Algorithms = 100.000%
Probability of Neural_Networks = 0.000%
Probability of Probabilistic_Methods = 0.000%
Probability of Reinforcement_Learning = 0.000%
Probability of Rule_Learning = 0.000%
Probability of Theory = 0.000%
------------------------------------------------------------
Example 9: Theory
Probability of Case_Based = 4.103%
Probability of Genetic_Algorithms = 5.217%
Probability of Neural_Networks = 14.532%
Probability of Probabilistic_Methods = 66.747%
Probability of Reinforcement_Learning = 3.008%
Probability of Rule_Learning = 1.782%
Probability of Theory = 4.611%
------------------------------------------------------------
Example 10: Case_Based
Probability of Case_Based = 99.566%
Probability of Genetic_Algorithms = 0.017%
Probability of Neural_Networks = 0.016%
Probability of Probabilistic_Methods = 0.155%
Probability of Reinforcement_Learning = 0.026%
Probability of Rule_Learning = 0.192%
Probability of Theory = 0.028%
------------------------------------------------------------
Conclusions
The results look OK! The GAT model seems to correctly predict the subjects of the papers, based on what they cite, about 80% of the time. Further improvements could be made by fine-tuning the hyper-parameters of the GAT. For instance, try changing the number of layers, the number of hidden units, or the optimizer/learning rate; add regularization (e.g., dropout); or modify the preprocessing step. We could also try to implement self-loops (i.e., paper X cites paper X) and/or make the graph undirected.