DCGAN to generate face images

DCGAN to generate face images

Author: fchollet
Date created: 2019/04/29
Last modified: 2023/12/21
Description: A simple DCGAN trained using fit() by overriding train_step on CelebA images.

ⓘ This example uses Keras 3

Setup

import keras
import tensorflow as tf

from keras import layers
from keras import ops
import matplotlib.pyplot as plt
import os
import gdown
from zipfile import ZipFile

Prepare CelebA data

We’ll use face images from the CelebA dataset, resized to 64x64.

os.makedirs("celeba_gan")

url = "https://drive.google.com/uc?id=1O7m1010EJjLE5QxLZiM9Fpjs7Oj6e684"
output = "celeba_gan/data.zip"
gdown.download(url, output, quiet=True)

with ZipFile("celeba_gan/data.zip", "r") as zipobj:
    zipobj.extractall("celeba_gan")

Create a dataset from our folder, and rescale the images to the [0-1] range:

dataset = keras.utils.image_dataset_from_directory(
    "celeba_gan", label_mode=None, image_size=(64, 64), batch_size=32
)
dataset = dataset.map(lambda x: x / 255.0)
Result
Found 202599 files.

Let’s display a sample image:

for x in dataset:
    plt.axis("off")
    plt.imshow((x.numpy() * 255).astype("int32")[0])
    break

png

Create the discriminator

It maps a 64x64 image to a binary classification score.

discriminator = keras.Sequential(
    [
        keras.Input(shape=(64, 64, 3)),
        layers.Conv2D(64, kernel_size=4, strides=2, padding="same"),
        layers.LeakyReLU(negative_slope=0.2),
        layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
        layers.LeakyReLU(negative_slope=0.2),
        layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
        layers.LeakyReLU(negative_slope=0.2),
        layers.Flatten(),
        layers.Dropout(0.2),
        layers.Dense(1, activation="sigmoid"),
    ],
    name="discriminator",
)
discriminator.summary()
Result
Model: "discriminator"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                    ┃ Output Shape              ┃    Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ conv2d (Conv2D)                 │ (None, 32, 32, 64)        │      3,136 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ leaky_re_lu (LeakyReLU)         │ (None, 32, 32, 64)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_1 (Conv2D)               │ (None, 16, 16, 128)       │    131,200 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ leaky_re_lu_1 (LeakyReLU)       │ (None, 16, 16, 128)       │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_2 (Conv2D)               │ (None, 8, 8, 128)         │    262,272 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ leaky_re_lu_2 (LeakyReLU)       │ (None, 8, 8, 128)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten (Flatten)               │ (None, 8192)              │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout (Dropout)               │ (None, 8192)              │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense (Dense)                   │ (None, 1)                 │      8,193 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 404,801 (1.54 MB)
 Trainable params: 404,801 (1.54 MB)
 Non-trainable params: 0 (0.00 B)

Create the generator

It mirrors the discriminator, replacing Conv2D layers with Conv2DTranspose layers.

latent_dim = 128

generator = keras.Sequential(
    [
        keras.Input(shape=(latent_dim,)),
        layers.Dense(8 * 8 * 128),
        layers.Reshape((8, 8, 128)),
        layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding="same"),
        layers.LeakyReLU(negative_slope=0.2),
        layers.Conv2DTranspose(256, kernel_size=4, strides=2, padding="same"),
        layers.LeakyReLU(negative_slope=0.2),
        layers.Conv2DTranspose(512, kernel_size=4, strides=2, padding="same"),
        layers.LeakyReLU(negative_slope=0.2),
        layers.Conv2D(3, kernel_size=5, padding="same", activation="sigmoid"),
    ],
    name="generator",
)
generator.summary()
Result
Model: "generator"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                    ┃ Output Shape              ┃    Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ dense_1 (Dense)                 │ (None, 8192)              │  1,056,768 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ reshape (Reshape)               │ (None, 8, 8, 128)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_transpose                │ (None, 16, 16, 128)       │    262,272 │
│ (Conv2DTranspose)               │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ leaky_re_lu_3 (LeakyReLU)       │ (None, 16, 16, 128)       │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_transpose_1              │ (None, 32, 32, 256)       │    524,544 │
│ (Conv2DTranspose)               │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ leaky_re_lu_4 (LeakyReLU)       │ (None, 32, 32, 256)       │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_transpose_2              │ (None, 64, 64, 512)       │  2,097,664 │
│ (Conv2DTranspose)               │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ leaky_re_lu_5 (LeakyReLU)       │ (None, 64, 64, 512)       │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_3 (Conv2D)               │ (None, 64, 64, 3)         │     38,403 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 3,979,651 (15.18 MB)
 Trainable params: 3,979,651 (15.18 MB)
 Non-trainable params: 0 (0.00 B)

Override train_step

class GAN(keras.Model):
    def __init__(self, discriminator, generator, latent_dim):
        super().__init__()
        self.discriminator = discriminator
        self.generator = generator
        self.latent_dim = latent_dim
        self.seed_generator = keras.random.SeedGenerator(1337)

    def compile(self, d_optimizer, g_optimizer, loss_fn):
        super().compile()
        self.d_optimizer = d_optimizer
        self.g_optimizer = g_optimizer
        self.loss_fn = loss_fn
        self.d_loss_metric = keras.metrics.Mean(name="d_loss")
        self.g_loss_metric = keras.metrics.Mean(name="g_loss")

    @property
    def metrics(self):
        return [self.d_loss_metric, self.g_loss_metric]

    def train_step(self, real_images):
        # Sample random points in the latent space
        batch_size = ops.shape(real_images)[0]
        random_latent_vectors = keras.random.normal(
            shape=(batch_size, self.latent_dim), seed=self.seed_generator
        )

        # Decode them to fake images
        generated_images = self.generator(random_latent_vectors)

        # Combine them with real images
        combined_images = ops.concatenate([generated_images, real_images], axis=0)

        # Assemble labels discriminating real from fake images
        labels = ops.concatenate(
            [ops.ones((batch_size, 1)), ops.zeros((batch_size, 1))], axis=0
        )
        # Add random noise to the labels - important trick!
        labels += 0.05 * tf.random.uniform(tf.shape(labels))

        # Train the discriminator
        with tf.GradientTape() as tape:
            predictions = self.discriminator(combined_images)
            d_loss = self.loss_fn(labels, predictions)
        grads = tape.gradient(d_loss, self.discriminator.trainable_weights)
        self.d_optimizer.apply_gradients(
            zip(grads, self.discriminator.trainable_weights)
        )

        # Sample random points in the latent space
        random_latent_vectors = keras.random.normal(
            shape=(batch_size, self.latent_dim), seed=self.seed_generator
        )

        # Assemble labels that say "all real images"
        misleading_labels = ops.zeros((batch_size, 1))

        # Train the generator (note that we should *not* update the weights
        # of the discriminator)!
        with tf.GradientTape() as tape:
            predictions = self.discriminator(self.generator(random_latent_vectors))
            g_loss = self.loss_fn(misleading_labels, predictions)
        grads = tape.gradient(g_loss, self.generator.trainable_weights)
        self.g_optimizer.apply_gradients(zip(grads, self.generator.trainable_weights))

        # Update metrics
        self.d_loss_metric.update_state(d_loss)
        self.g_loss_metric.update_state(g_loss)
        return {
            "d_loss": self.d_loss_metric.result(),
            "g_loss": self.g_loss_metric.result(),
        }

Create a callback that periodically saves generated images

class GANMonitor(keras.callbacks.Callback):
    def __init__(self, num_img=3, latent_dim=128):
        self.num_img = num_img
        self.latent_dim = latent_dim
        self.seed_generator = keras.random.SeedGenerator(42)

    def on_epoch_end(self, epoch, logs=None):
        random_latent_vectors = keras.random.normal(
            shape=(self.num_img, self.latent_dim), seed=self.seed_generator
        )
        generated_images = self.model.generator(random_latent_vectors)
        generated_images *= 255
        generated_images.numpy()
        for i in range(self.num_img):
            img = keras.utils.array_to_img(generated_images[i])
            img.save("generated_img_%03d_%d.png" % (epoch, i))

Train the end-to-end model

epochs = 1  # In practice, use ~100 epochs

gan = GAN(discriminator=discriminator, generator=generator, latent_dim=latent_dim)
gan.compile(
    d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
    loss_fn=keras.losses.BinaryCrossentropy(),
)

gan.fit(
    dataset, epochs=epochs, callbacks=[GANMonitor(num_img=10, latent_dim=latent_dim)]
)
Result
    2/6332 ━━━━━━━━━━━━━━━━━━━━  9:54 94ms/step - d_loss: 0.6792 - g_loss: 0.7880

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1704214667.959762    1319 device_compiler.h:186] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.

 6332/6332 ━━━━━━━━━━━━━━━━━━━━ 557s 84ms/step - d_loss: 0.5616 - g_loss: 1.4099

<keras.src.callbacks.history.History at 0x7f251d32bc40>

Some of the last generated images around epoch 30 (results keep improving after that):

results