DCGAN to generate face images
- Original Link : https://keras.io/examples/generative/dcgan_overriding_train_step/
- Last Checked at : 2024-11-23
Author: fchollet
Date created: 2019/04/29
Last modified: 2023/12/21
Description: A simple DCGAN trained using fit()
by overriding train_step
on CelebA images.
Setup
import keras
import tensorflow as tf
from keras import layers
from keras import ops
import matplotlib.pyplot as plt
import os
import gdown
from zipfile import ZipFile
Prepare CelebA data
We’ll use face images from the CelebA dataset, resized to 64x64.
os.makedirs("celeba_gan")
url = "https://drive.google.com/uc?id=1O7m1010EJjLE5QxLZiM9Fpjs7Oj6e684"
output = "celeba_gan/data.zip"
gdown.download(url, output, quiet=True)
with ZipFile("celeba_gan/data.zip", "r") as zipobj:
zipobj.extractall("celeba_gan")
Create a dataset from our folder, and rescale the images to the [0-1] range:
dataset = keras.utils.image_dataset_from_directory(
"celeba_gan", label_mode=None, image_size=(64, 64), batch_size=32
)
dataset = dataset.map(lambda x: x / 255.0)
Result
Found 202599 files.
Let’s display a sample image:
for x in dataset:
plt.axis("off")
plt.imshow((x.numpy() * 255).astype("int32")[0])
break
Create the discriminator
It maps a 64x64 image to a binary classification score.
discriminator = keras.Sequential(
[
keras.Input(shape=(64, 64, 3)),
layers.Conv2D(64, kernel_size=4, strides=2, padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Flatten(),
layers.Dropout(0.2),
layers.Dense(1, activation="sigmoid"),
],
name="discriminator",
)
discriminator.summary()
Result
Model: "discriminator"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ conv2d (Conv2D) │ (None, 32, 32, 64) │ 3,136 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ leaky_re_lu (LeakyReLU) │ (None, 32, 32, 64) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_1 (Conv2D) │ (None, 16, 16, 128) │ 131,200 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ leaky_re_lu_1 (LeakyReLU) │ (None, 16, 16, 128) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_2 (Conv2D) │ (None, 8, 8, 128) │ 262,272 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ leaky_re_lu_2 (LeakyReLU) │ (None, 8, 8, 128) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten (Flatten) │ (None, 8192) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout (Dropout) │ (None, 8192) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense (Dense) │ (None, 1) │ 8,193 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
Total params: 404,801 (1.54 MB)
Trainable params: 404,801 (1.54 MB)
Non-trainable params: 0 (0.00 B)
Create the generator
It mirrors the discriminator, replacing Conv2D
layers with Conv2DTranspose
layers.
latent_dim = 128
generator = keras.Sequential(
[
keras.Input(shape=(latent_dim,)),
layers.Dense(8 * 8 * 128),
layers.Reshape((8, 8, 128)),
layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2DTranspose(256, kernel_size=4, strides=2, padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2DTranspose(512, kernel_size=4, strides=2, padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2D(3, kernel_size=5, padding="same", activation="sigmoid"),
],
name="generator",
)
generator.summary()
Result
Model: "generator"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type) ┃ Output Shape ┃ Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ dense_1 (Dense) │ (None, 8192) │ 1,056,768 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ reshape (Reshape) │ (None, 8, 8, 128) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_transpose │ (None, 16, 16, 128) │ 262,272 │
│ (Conv2DTranspose) │ │ │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ leaky_re_lu_3 (LeakyReLU) │ (None, 16, 16, 128) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_transpose_1 │ (None, 32, 32, 256) │ 524,544 │
│ (Conv2DTranspose) │ │ │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ leaky_re_lu_4 (LeakyReLU) │ (None, 32, 32, 256) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_transpose_2 │ (None, 64, 64, 512) │ 2,097,664 │
│ (Conv2DTranspose) │ │ │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ leaky_re_lu_5 (LeakyReLU) │ (None, 64, 64, 512) │ 0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_3 (Conv2D) │ (None, 64, 64, 3) │ 38,403 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
Total params: 3,979,651 (15.18 MB)
Trainable params: 3,979,651 (15.18 MB)
Non-trainable params: 0 (0.00 B)
Override train_step
class GAN(keras.Model):
def __init__(self, discriminator, generator, latent_dim):
super().__init__()
self.discriminator = discriminator
self.generator = generator
self.latent_dim = latent_dim
self.seed_generator = keras.random.SeedGenerator(1337)
def compile(self, d_optimizer, g_optimizer, loss_fn):
super().compile()
self.d_optimizer = d_optimizer
self.g_optimizer = g_optimizer
self.loss_fn = loss_fn
self.d_loss_metric = keras.metrics.Mean(name="d_loss")
self.g_loss_metric = keras.metrics.Mean(name="g_loss")
@property
def metrics(self):
return [self.d_loss_metric, self.g_loss_metric]
def train_step(self, real_images):
# Sample random points in the latent space
batch_size = ops.shape(real_images)[0]
random_latent_vectors = keras.random.normal(
shape=(batch_size, self.latent_dim), seed=self.seed_generator
)
# Decode them to fake images
generated_images = self.generator(random_latent_vectors)
# Combine them with real images
combined_images = ops.concatenate([generated_images, real_images], axis=0)
# Assemble labels discriminating real from fake images
labels = ops.concatenate(
[ops.ones((batch_size, 1)), ops.zeros((batch_size, 1))], axis=0
)
# Add random noise to the labels - important trick!
labels += 0.05 * tf.random.uniform(tf.shape(labels))
# Train the discriminator
with tf.GradientTape() as tape:
predictions = self.discriminator(combined_images)
d_loss = self.loss_fn(labels, predictions)
grads = tape.gradient(d_loss, self.discriminator.trainable_weights)
self.d_optimizer.apply_gradients(
zip(grads, self.discriminator.trainable_weights)
)
# Sample random points in the latent space
random_latent_vectors = keras.random.normal(
shape=(batch_size, self.latent_dim), seed=self.seed_generator
)
# Assemble labels that say "all real images"
misleading_labels = ops.zeros((batch_size, 1))
# Train the generator (note that we should *not* update the weights
# of the discriminator)!
with tf.GradientTape() as tape:
predictions = self.discriminator(self.generator(random_latent_vectors))
g_loss = self.loss_fn(misleading_labels, predictions)
grads = tape.gradient(g_loss, self.generator.trainable_weights)
self.g_optimizer.apply_gradients(zip(grads, self.generator.trainable_weights))
# Update metrics
self.d_loss_metric.update_state(d_loss)
self.g_loss_metric.update_state(g_loss)
return {
"d_loss": self.d_loss_metric.result(),
"g_loss": self.g_loss_metric.result(),
}
Create a callback that periodically saves generated images
class GANMonitor(keras.callbacks.Callback):
def __init__(self, num_img=3, latent_dim=128):
self.num_img = num_img
self.latent_dim = latent_dim
self.seed_generator = keras.random.SeedGenerator(42)
def on_epoch_end(self, epoch, logs=None):
random_latent_vectors = keras.random.normal(
shape=(self.num_img, self.latent_dim), seed=self.seed_generator
)
generated_images = self.model.generator(random_latent_vectors)
generated_images *= 255
generated_images.numpy()
for i in range(self.num_img):
img = keras.utils.array_to_img(generated_images[i])
img.save("generated_img_%03d_%d.png" % (epoch, i))
Train the end-to-end model
epochs = 1 # In practice, use ~100 epochs
gan = GAN(discriminator=discriminator, generator=generator, latent_dim=latent_dim)
gan.compile(
d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
loss_fn=keras.losses.BinaryCrossentropy(),
)
gan.fit(
dataset, epochs=epochs, callbacks=[GANMonitor(num_img=10, latent_dim=latent_dim)]
)
Result
2/6332 [37m━━━━━━━━━━━━━━━━━━━━ 9:54 94ms/step - d_loss: 0.6792 - g_loss: 0.7880
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1704214667.959762 1319 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.
6332/6332 ━━━━━━━━━━━━━━━━━━━━ 557s 84ms/step - d_loss: 0.5616 - g_loss: 1.4099
<keras.src.callbacks.history.History at 0x7f251d32bc40>
Some of the last generated images around epoch 30 (results keep improving after that):