NumPy ops
- Original Link : https://keras.io/api/ops/numpy/
- Last Checked at : 2024-11-25
absolute
function
keras.ops.absolute(x)
Compute the absolute value element-wise.
keras.ops.abs
is a shorthand for this function.
Arguments
- x: Input tensor.
Returns
An array containing the absolute value of each element in x
.
Example
>>> x = keras.ops.convert_to_tensor([-1.2, 1.2])
>>> keras.ops.absolute(x)
array([1.2, 1.2], dtype=float32)
add
function
keras.ops.add(x1, x2)
Add arguments element-wise.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
The tensor containing the element-wise sum of x1
and x2
.
Examples
>>> x1 = keras.ops.convert_to_tensor([1, 4])
>>> x2 = keras.ops.convert_to_tensor([5, 6])
>>> keras.ops.add(x1, x2)
array([6, 10], dtype=int32)
keras.ops.add
also broadcasts shapes:
>>> x1 = keras.ops.convert_to_tensor(
... [[5, 4],
... [5, 6]]
... )
>>> x2 = keras.ops.convert_to_tensor([5, 6])
>>> keras.ops.add(x1, x2)
array([[10 10]
[10 12]], shape=(2, 2), dtype=int32)
all
function
keras.ops.all(x, axis=None, keepdims=False)
Test whether all array elements along a given axis evaluate to True
.
Arguments
- x: Input tensor.
- axis: An integer or tuple of integers that represent the axis along
which a logical AND reduction is performed. The default
(
axis=None
) is to perform a logical AND over all the dimensions of the input array.axis
may be negative, in which case it counts for the last to the first axis. - keepdims: If
True
, axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. Defaults toFalse
.
Returns
The tensor containing the logical AND reduction over the axis
.
Examples
>>> x = keras.ops.convert_to_tensor([True, False])
>>> keras.ops.all(x)
array(False, shape=(), dtype=bool)
>>> x = keras.ops.convert_to_tensor([[True, False], [True, True]])
>>> keras.ops.all(x, axis=0)
array([ True False], shape=(2,), dtype=bool)
keepdims=True
outputs a tensor with dimensions reduced to one.
>>> x = keras.ops.convert_to_tensor([[True, False], [True, True]])
>>> keras.ops.all(x, keepdims=True)
array([[False]], shape=(1, 1), dtype=bool)
amax
function
keras.ops.amax(x, axis=None, keepdims=False)
Returns the maximum of an array or maximum value along an axis.
Arguments
- x: Input tensor.
- axis: Axis along which to compute the maximum.
By default (
axis=None
), find the maximum value in all the dimensions of the input array. - keepdims: If
True
, axes which are reduced are left in the result as dimensions that are broadcast to the size of the original input tensor. Defaults toFalse
.
Returns
An array with the maximum value. If axis=None
, the result is a scalar
value representing the maximum element in the entire array. If axis
is
given, the result is an array with the maximum values along
the specified axis.
Examples
>>> x = keras.ops.convert_to_tensor([[1, 3, 5], [2, 3, 6]])
>>> keras.ops.amax(x)
array(6, dtype=int32)
>>> x = keras.ops.convert_to_tensor([[1, 6, 8], [1, 5, 2]])
>>> keras.ops.amax(x, axis=0)
array([1, 6, 8], dtype=int32)
>>> x = keras.ops.convert_to_tensor([[1, 6, 8], [1, 5, 2]])
>>> keras.ops.amax(x, axis=1, keepdims=True)
array([[8], [5]], dtype=int32)
amin
function
keras.ops.amin(x, axis=None, keepdims=False)
Returns the minimum of an array or minimum value along an axis.
Arguments
- x: Input tensor.
- axis: Axis along which to compute the minimum.
By default (
axis=None
), find the minimum value in all the dimensions of the input array. - keepdims: If
True
, axes which are reduced are left in the result as dimensions that are broadcast to the size of the original input tensor. Defaults toFalse
.
Returns
An array with the minimum value. If axis=None
, the result is a scalar
value representing the minimum element in the entire array. If axis
is
given, the result is an array with the minimum values along
the specified axis.
Examples
>>> x = keras.ops.convert_to_tensor([1, 3, 5, 2, 3, 6])
>>> keras.ops.amin(x)
array(1, dtype=int32)
>>> x = keras.ops.convert_to_tensor([[1, 6, 8], [7, 5, 3]])
>>> keras.ops.amin(x, axis=0)
array([1,5,3], dtype=int32)
>>> x = keras.ops.convert_to_tensor([[1, 6, 8], [7, 5, 3]])
>>> keras.ops.amin(x, axis=1, keepdims=True)
array([[1],[3]], dtype=int32)
any
function
keras.ops.any(x, axis=None, keepdims=False)
Test whether any array element along a given axis evaluates to True
.
Arguments
- x: Input tensor.
- axis: An integer or tuple of integers that represent the axis along
which a logical OR reduction is performed. The default
(
axis=None
) is to perform a logical OR over all the dimensions of the input array.axis
may be negative, in which case it counts for the last to the first axis. - keepdims: If
True
, axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. Defaults toFalse
.
Returns
The tensor containing the logical OR reduction over the axis
.
Examples
>>> x = keras.ops.convert_to_tensor([True, False])
>>> keras.ops.any(x)
array(True, shape=(), dtype=bool)
>>> x = keras.ops.convert_to_tensor([[True, False], [True, True]])
>>> keras.ops.any(x, axis=0)
array([ True True], shape=(2,), dtype=bool)
keepdims=True
outputs a tensor with dimensions reduced to one.
>>> x = keras.ops.convert_to_tensor([[True, False], [True, True]])
>>> keras.ops.all(x, keepdims=True)
array([[False]], shape=(1, 1), dtype=bool)
append
function
keras.ops.append(x1, x2, axis=None)
Append tensor x2
to the end of tensor x1
.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
- axis: Axis along which tensor
x2
is appended to tensorx1
. IfNone
, both tensors are flattened before use.
Returns
A tensor with the values of x2
appended to x1
.
Examples
>>> x1 = keras.ops.convert_to_tensor([1, 2, 3])
>>> x2 = keras.ops.convert_to_tensor([[4, 5, 6], [7, 8, 9]])
>>> keras.ops.append(x1, x2)
array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int32)
When axis
is specified, x1
and x2
must have compatible shapes.
>>> x1 = keras.ops.convert_to_tensor([[1, 2, 3], [4, 5, 6]])
>>> x2 = keras.ops.convert_to_tensor([[7, 8, 9]])
>>> keras.ops.append(x1, x2, axis=0)
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]], dtype=int32)
>>> x3 = keras.ops.convert_to_tensor([7, 8, 9])
>>> keras.ops.append(x1, x3, axis=0)
Traceback (most recent call last):
...
TypeError: Cannot concatenate arrays with different numbers of
dimensions: got (2, 3), (3,).
arange
function
keras.ops.arange(start, stop=None, step=1, dtype=None)
Return evenly spaced values within a given interval.
arange
can be called with a varying number of positional arguments: * arange(stop)
: Values are generated within the half-open interval
[0, stop)
(in other words, the interval including start but excluding
stop). * arange(start, stop)
: Values are generated within the half-open interval
[start, stop)
. * arange(start, stop, step)
: Values are generated within the half-open
interval [start, stop)
, with spacing between values given by step.
Arguments
- start: Integer or real, representing the start of the interval. The interval includes this value.
- stop: Integer or real, representing the end of the interval. The
interval does not include this value, except in some cases where
step
is not an integer and floating point round-off affects the length ofout
. Defaults toNone
. - step: Integer or real, represent the spacing between values. For any
output
out
, this is the distance between two adjacent values,out[i+1] - out[i]
. The default step size is 1. Ifstep
is specified as a position argument,start
must also be given. - dtype: The type of the output array. If
dtype
is not given, infer the data type from the other input arguments.
Returns
Tensor of evenly spaced values.
For floating point arguments, the length of the result is
ceil((stop - start)/step)
. Because of floating point overflow, this
rule may result in the last element of out being greater than stop.
Examples
>>> keras.ops.arange(3)
array([0, 1, 2], dtype=int32)
>>> keras.ops.arange(3.0)
array([0., 1., 2.], dtype=float32)
>>> keras.ops.arange(3, 7)
array([3, 4, 5, 6], dtype=int32)
>>> keras.ops.arange(3, 7, 2)
array([3, 5], dtype=int32)
arccos
function
keras.ops.arccos(x)
Trigonometric inverse cosine, element-wise.
The inverse of cos
so that, if y = cos(x)
, then x = arccos(y)
.
Arguments
- x: Input tensor.
Returns
Tensor of the angle of the ray intersecting the unit circle at the given
x-coordinate in radians [0, pi]
.
Example
>>> x = keras.ops.convert_to_tensor([1, -1])
>>> keras.ops.arccos(x)
array([0.0, 3.1415927], dtype=float32)
arccosh
function
keras.ops.arccosh(x)
Inverse hyperbolic cosine, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor of same shape as x.
Example
>>> x = keras.ops.convert_to_tensor([10, 100])
>>> keras.ops.arccosh(x)
array([2.993223, 5.298292], dtype=float32)
arcsin
function
keras.ops.arcsin(x)
Inverse sine, element-wise.
Arguments
- x: Input tensor.
Returns
Tensor of the inverse sine of each element in x
, in radians and in
the closed interval [-pi/2, pi/2]
.
Example
>>> x = keras.ops.convert_to_tensor([1, -1, 0])
>>> keras.ops.arcsin(x)
array([ 1.5707964, -1.5707964, 0.], dtype=float32)
arcsinh
function
keras.ops.arcsinh(x)
Inverse hyperbolic sine, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor of same shape as x
.
Example
>>> x = keras.ops.convert_to_tensor([1, -1, 0])
>>> keras.ops.arcsinh(x)
array([0.88137364, -0.88137364, 0.0], dtype=float32)
arctan
function
keras.ops.arctan(x)
Trigonometric inverse tangent, element-wise.
Arguments
- x: Input tensor.
Returns
Tensor of the inverse tangent of each element in x
, in the interval
[-pi/2, pi/2]
.
Example
>>> x = keras.ops.convert_to_tensor([0, 1])
>>> keras.ops.arctan(x)
array([0., 0.7853982], dtype=float32)
arctan2
function
keras.ops.arctan2(x1, x2)
Element-wise arc tangent of x1/x2
choosing the quadrant correctly.
The quadrant (i.e., branch) is chosen so that arctan2(x1, x2)
is the
signed angle in radians between the ray ending at the origin and passing
through the point (1, 0)
, and the ray ending at the origin and passing
through the point (x2, x1)
. (Note the role reversal: the “y-coordinate”
is the first function parameter, the “x-coordinate” is the second.) By IEEE
convention, this function is defined for x2 = +/-0
and for either or both
of x1
and x2
= +/-inf
.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
Tensor of angles in radians, in the range [-pi, pi]
.
Examples
Consider four points in different quadrants:
>>> x = keras.ops.convert_to_tensor([-1, +1, +1, -1])
>>> y = keras.ops.convert_to_tensor([-1, -1, +1, +1])
>>> keras.ops.arctan2(y, x) * 180 / numpy.pi
array([-135., -45., 45., 135.], dtype=float32)
Note the order of the parameters. arctan2
is defined also when x2=0 and
at several other points, obtaining values in the range [-pi, pi]
:
>>> keras.ops.arctan2(
... keras.ops.array([1., -1.]),
... keras.ops.array([0., 0.]),
... )
array([ 1.5707964, -1.5707964], dtype=float32)
>>> keras.ops.arctan2(
... keras.ops.array([0., 0., numpy.inf]),
... keras.ops.array([+0., -0., numpy.inf]),
... )
array([0., 3.1415925, 0.7853982], dtype=float32)
arctanh
function
keras.ops.arctanh(x)
Inverse hyperbolic tangent, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor of same shape as x
.
argmax
function
keras.ops.argmax(x, axis=None, keepdims=False)
Returns the indices of the maximum values along an axis.
Arguments
- x: Input tensor.
- axis: By default, the index is into the flattened tensor, otherwise along the specified axis.
- keepdims: If this is set to
True
, the axes which are reduced are left in the result as dimensions with size one. Defaults toFalse
.
Returns
Tensor of indices. It has the same shape as x
, with the dimension
along axis
removed.
Example
>>> x = keras.ops.arange(6).reshape(2, 3) + 10
>>> x
array([[10, 11, 12],
[13, 14, 15]], dtype=int32)
>>> keras.ops.argmax(x)
array(5, dtype=int32)
>>> keras.ops.argmax(x, axis=0)
array([1, 1, 1], dtype=int32)
>>> keras.ops.argmax(x, axis=1)
array([2, 2], dtype=int32)
argmin
function
keras.ops.argmin(x, axis=None, keepdims=False)
Returns the indices of the minium values along an axis.
Arguments
- x: Input tensor.
- axis: By default, the index is into the flattened tensor, otherwise along the specified axis.
- keepdims: If this is set to
True
, the axes which are reduced are left in the result as dimensions with size one. Defaults toFalse
.
Returns
Tensor of indices. It has the same shape as x
, with the dimension
along axis
removed.
Example
>>> x = keras.ops.arange(6).reshape(2, 3) + 10
>>> x
array([[10, 11, 12],
[13, 14, 15]], dtype=int32)
>>> keras.ops.argmin(x)
array(0, dtype=int32)
>>> keras.ops.argmin(x, axis=0)
array([0, 0, 0], dtype=int32)
>>> keras.ops.argmin(x, axis=1)
array([0, 0], dtype=int32)
argpartition
function
keras.ops.argpartition(x, kth, axis=-1)
Performs an indirect partition along the given axis.
It returns an array
of indices of the same shape as x
that index data along the given axis
in partitioned order.
Arguments
- a: Array to sort.
- kth: Element index to partition by. The k-th element will be in its final sorted position and all smaller elements will be moved before it and all larger elements behind it. The order of all elements in the partitions is undefined. If provided with a sequence of k-th it will partition all of them into their sorted position at once.
- axis: Axis along which to sort. The default is -1 (the last axis).
If
None
, the flattened array is used.
Returns
Array of indices that partition x
along the specified axis
.
argsort
function
keras.ops.argsort(x, axis=-1)
Returns the indices that would sort a tensor.
Arguments
- x: Input tensor.
- axis: Axis along which to sort. Defaults to
-1
(the last axis). IfNone
, the flattened tensor is used.
Returns
Tensor of indices that sort x
along the specified axis
.
Examples
One dimensional array:
>>> x = keras.ops.array([3, 1, 2])
>>> keras.ops.argsort(x)
array([1, 2, 0], dtype=int32)
Two-dimensional array:
>>> x = keras.ops.array([[0, 3], [3, 2], [4, 5]])
>>> x
array([[0, 3],
[3, 2],
[4, 5]], dtype=int32)
>>> keras.ops.argsort(x, axis=0)
array([[0, 1],
[1, 0],
[2, 2]], dtype=int32)
>>> keras.ops.argsort(x, axis=1)
array([[0, 1],
[1, 0],
[0, 1]], dtype=int32)
array
function
keras.ops.array(x, dtype=None)
Create a tensor.
Arguments
- x: Input tensor.
- dtype: The desired data-type for the tensor.
Returns
A tensor.
Examples
>>> keras.ops.array([1, 2, 3])
array([1, 2, 3], dtype=int32)
>>> keras.ops.array([1, 2, 3], dtype="float32")
array([1., 2., 3.], dtype=float32)
average
function
keras.ops.average(x, axis=None, weights=None)
Compute the weighted average along the specified axis.
Arguments
- x: Input tensor.
- axis: Integer along which to average
x
. The default,axis=None
, will average over all of the elements of the input tensor. If axis is negative it counts from the last to the first axis. - weights: Tensor of wieghts associated with the values in
x
. Each value inx
contributes to the average according to its associated weight. The weights array can either be 1-D (in which case its length must be the size of a along the given axis) or of the same shape asx
. Ifweights=None
(default), then all data inx
are assumed to have a weight equal to one. - The 1-D calculation is:
avg = sum(a * weights) / sum(weights)
. The only constraint on weights is thatsum(weights)
must not be 0.
Returns
Return the average along the specified axis.
Examples
>>> data = keras.ops.arange(1, 5)
>>> data
array([1, 2, 3, 4], dtype=int32)
>>> keras.ops.average(data)
array(2.5, dtype=float32)
>>> keras.ops.average(
... keras.ops.arange(1, 11),
... weights=keras.ops.arange(10, 0, -1)
... )
array(4., dtype=float32)
>>> data = keras.ops.arange(6).reshape((3, 2))
>>> data
array([[0, 1],
[2, 3],
[4, 5]], dtype=int32)
>>> keras.ops.average(
... data,
... axis=1,
... weights=keras.ops.array([1./4, 3./4])
... )
array([0.75, 2.75, 4.75], dtype=float32)
>>> keras.ops.average(
... data,
... weights=keras.ops.array([1./4, 3./4])
... )
Traceback (most recent call last):
...
ValueError: Axis must be specified when shapes of a and weights differ.
bincount
function
keras.ops.bincount(x, weights=None, minlength=0, sparse=False)
Count the number of occurrences of each value in a tensor of integers.
Arguments
- x: Input tensor. It must be of dimension 1, and it must only contain non-negative integer(s).
- weights: Weight tensor.
It must have the same length as
x
. The default value isNone
. If specified,x
is weighted by it, i.e. ifn = x[i]
,out[n] += weight[i]
instead of the default behaviorout[n] += 1
. - minlength: An integer.
The default value is 0. If specified, there will be at least
this number of bins in the output tensor. If greater than
max(x) + 1
, each value of the output at an index higher thanmax(x)
is set to 0. - sparse: Whether to return a sparse tensor; for backends that support sparse tensors.
Returns
1D tensor where each element gives the number of occurrence(s) of its
index value in x. Its length is the maximum between max(x) + 1
and
minlength.
Examples
>>> x = keras.ops.array([1, 2, 2, 3], dtype="uint8")
>>> keras.ops.bincount(x)
array([0, 1, 2, 1], dtype=int32)
>>> weights = x / 2
>>> weights
array([0.5, 1., 1., 1.5], dtype=float64)
>>> keras.ops.bincount(x, weights=weights)
array([0., 0.5, 2., 1.5], dtype=float64)
>>> minlength = (keras.ops.max(x).numpy() + 1) + 2 # 6
>>> keras.ops.bincount(x, minlength=minlength)
array([0, 1, 2, 1, 0, 0], dtype=int32)
bitwise_and
function
keras.ops.bitwise_and(x, y)
Compute the bit-wise AND of two arrays element-wise.
Computes the bit-wise AND of the underlying binary representation of the
integers in the input arrays. This ufunc implements the C/Python operator
&
.
Arguments
- x: Input integer tensor.
- y: Input integer tensor.
Returns
Result tensor.
bitwise_invert
function
keras.ops.bitwise_invert(x)
Compute bit-wise inversion, or bit-wise NOT, element-wise.
Computes the bit-wise NOT of the underlying binary representation of the
integers in the input arrays. This ufunc implements the C/Python operator
~
.
Arguments
- x: Input integer tensor.
Returns
Result tensor.
bitwise_left_shift
function
keras.ops.bitwise_left_shift(x, y)
Shift the bits of an integer to the left.
Bits are shifted to the left by appending y
0s at the right of x
.
Since the internal representation of numbers is in binary format, this
operation is equivalent to multiplying x
by 2**y
.
Arguments
- x: Input integer tensor.
- y: Input integer tensor.
Returns
Result tensor.
bitwise_not
function
keras.ops.bitwise_not(x)
Compute bit-wise inversion, or bit-wise NOT, element-wise.
Computes the bit-wise NOT of the underlying binary representation of the
integers in the input arrays. This ufunc implements the C/Python operator
~
.
Arguments
- x: Input integer tensor.
Returns
Result tensor.
bitwise_or
function
keras.ops.bitwise_or(x, y)
Compute the bit-wise OR of two arrays element-wise.
Computes the bit-wise OR of the underlying binary representation of the
integers in the input arrays. This ufunc implements the C/Python operator
|
.
Arguments
- x: Input integer tensor.
- y: Input integer tensor.
Returns
Result tensor.
bitwise_right_shift
function
keras.ops.bitwise_right_shift(x, y)
Shift the bits of an integer to the right.
Bits are shifted to the right y
. Because the internal representation of
numbers is in binary format, this operation is equivalent to dividing x
by
2**y
.
Arguments
- x: Input integer tensor.
- y: Input integer tensor.
Returns
Result tensor.
bitwise_xor
function
keras.ops.bitwise_xor(x, y)
Compute the bit-wise XOR of two arrays element-wise.
Computes the bit-wise XOR of the underlying binary representation of the
integers in the input arrays. This ufunc implements the C/Python operator
^
.
Arguments
- x: Input integer tensor.
- y: Input integer tensor.
Returns
Result tensor.
broadcast_to
function
keras.ops.broadcast_to(x, shape)
Broadcast a tensor to a new shape.
Arguments
- x: The tensor to broadcast.
- shape: The shape of the desired tensor. A single integer
i
is interpreted as(i,)
.
Returns
A tensor with the desired shape.
Examples
>>> x = keras.ops.array([1, 2, 3])
>>> keras.ops.broadcast_to(x, (3, 3))
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
ceil
function
keras.ops.ceil(x)
Return the ceiling of the input, element-wise.
The ceil of the scalar x
is the smallest integer i
, such that
i >= x
.
Arguments
- x: Input tensor.
Returns
The ceiling of each element in x
, with float dtype.
clip
function
keras.ops.clip(x, x_min, x_max)
Clip (limit) the values in a tensor.
Given an interval, values outside the interval are clipped to the
interval edges. For example, if an interval of [0, 1]
is specified,
values smaller than 0 become 0, and values larger than 1 become 1.
Arguments
- x: Input tensor.
- x_min: Minimum value.
- x_max: Maximum value.
Returns
The clipped tensor.
concatenate
function
keras.ops.concatenate(xs, axis=0)
Join a sequence of tensors along an existing axis.
Arguments
- xs: The sequence of tensors to concatenate.
- axis: The axis along which the tensors will be joined. Defaults to
0
.
Returns
The concatenated tensor.
conj
function
keras.ops.conj(x)
Shorthand for keras.ops.conjugate
.
conjugate
function
keras.ops.conjugate(x)
Returns the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.
keras.ops.conj
is a shorthand for this function.
Arguments
- x: Input tensor.
Returns
The complex conjugate of each element in x
.
copy
function
keras.ops.copy(x)
Returns a copy of x
.
Arguments
- x: Input tensor.
Returns
A copy of x
.
correlate
function
keras.ops.correlate(x1, x2, mode="valid")
Compute the cross-correlation of two 1-dimensional tensors.
Arguments
- x1: First 1-dimensional input tensor of length M.
- x2: Second 1-dimensional input tensor of length N.
- mode: Either
valid
,same
orfull
. By default the mode is set tovalid
, which returns an output of length max(M, N) - min(M, N) + 1.same
returns an output of length max(M, N).full
mode returns the convolution at each point of overlap, with an output length of N+M-1
Returns
Output tensor, cross-correlation of x1
and x2
.
cos
function
keras.ops.cos(x)
Cosine, element-wise.
Arguments
- x: Input tensor.
Returns
The corresponding cosine values.
cosh
function
keras.ops.cosh(x)
Hyperbolic cosine, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor of same shape as x
.
count_nonzero
function
keras.ops.count_nonzero(x, axis=None)
Counts the number of non-zero values in x
along the given axis
.
If no axis is specified then all non-zeros in the tensor are counted.
Arguments
- x: Input tensor.
- axis: Axis or tuple of axes along which to count the number of
non-zeros. Defaults to
None
.
Returns
int or tensor of ints.
Examples
>>> x = keras.ops.array([[0, 1, 7, 0], [3, 0, 2, 19]])
>>> keras.ops.count_nonzero(x)
5
>>> keras.ops.count_nonzero(x, axis=0)
array([1, 1, 2, 1], dtype=int64)
>>> keras.ops.count_nonzero(x, axis=1)
array([2, 3], dtype=int64)
cross
function
keras.ops.cross(x1, x2, axisa=-1, axisb=-1, axisc=-1, axis=None)
Returns the cross product of two (arrays of) vectors.
The cross product of x1
and x2
in R^3 is a vector
perpendicular to both x1
and x2
. If x1
and x2
are arrays of
vectors, the vectors are defined by the last axis of x1
and x2
by default, and these axes can have dimensions 2 or 3.
Where the dimension of either x1
or x2
is 2, the third component of
the input vector is assumed to be zero and the cross product calculated
accordingly.
In cases where both input vectors have dimension 2, the z-component of the cross product is returned.
Arguments
- x1: Components of the first vector(s).
- x2: Components of the second vector(s).
- axisa: Axis of
x1
that defines the vector(s). Defaults to-1
. - axisb: Axis of
x2
that defines the vector(s). Defaults to-1
. - axisc: Axis of the result containing the cross product vector(s). Ignored if both input vectors have dimension 2, as the return is scalar. By default, the last axis.
- axis: If defined, the axis of
x1
,x2
and the result that defines the vector(s) and cross product(s). Overridesaxisa
,axisb
andaxisc
.
Note:
Torch backend does not support two dimensional vectors, or the
arguments axisa
, axisb
and axisc
. Use axis
instead.
Returns
Vector cross product(s).
cumprod
function
keras.ops.cumprod(x, axis=None, dtype=None)
Return the cumulative product of elements along a given axis.
Arguments
- x: Input tensor.
- axis: Axis along which the cumulative product is computed. By default the input is flattened.
- dtype: dtype of returned tensor. Defaults to x.dtype.
Returns
Output tensor.
cumsum
function
keras.ops.cumsum(x, axis=None, dtype=None)
Returns the cumulative sum of elements along a given axis.
Arguments
- x: Input tensor.
- axis: Axis along which the cumulative sum is computed. By default the input is flattened.
- dtype: dtype of returned tensor. Defaults to x.dtype.
Returns
Output tensor.
diag
function
keras.ops.diag(x, k=0)
Extract a diagonal or construct a diagonal array.
Arguments
- x: Input tensor. If
x
is 2-D, returns the k-th diagonal ofx
. Ifx
is 1-D, return a 2-D tensor withx
on the k-th diagonal. - k: The diagonal to consider. Defaults to
0
. Usek > 0
for diagonals above the main diagonal, andk < 0
for diagonals below the main diagonal.
Returns
The extracted diagonal or constructed diagonal tensor.
Examples
>>> from keras.src import ops
>>> x = ops.arange(9).reshape((3, 3))
>>> x
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> ops.diag(x)
array([0, 4, 8])
>>> ops.diag(x, k=1)
array([1, 5])
>>> ops.diag(x, k=-1)
array([3, 7])
>>> ops.diag(ops.diag(x)))
array([[0, 0, 0],
[0, 4, 0],
[0, 0, 8]])
diagonal
function
keras.ops.diagonal(x, offset=0, axis1=0, axis2=1)
Return specified diagonals.
If x
is 2-D, returns the diagonal of x
with the given offset, i.e., the
collection of elements of the form x[i, i+offset]
.
If x
has more than two dimensions, the axes specified by axis1
and axis2
are used to determine the 2-D sub-array whose diagonal
is returned.
The shape of the resulting array can be determined by removing axis1
and axis2
and appending an index to the right equal to the size of
the resulting diagonals.
Arguments
- x: Input tensor.
- offset: Offset of the diagonal from the main diagonal.
Can be positive or negative. Defaults to
0
.(main diagonal). - axis1: Axis to be used as the first axis of the 2-D sub-arrays.
Defaults to
0
.(first axis). - axis2: Axis to be used as the second axis of the 2-D sub-arrays.
Defaults to
1
(second axis).
Returns
Tensor of diagonals.
Examples
>>> from keras.src import ops
>>> x = ops.arange(4).reshape((2, 2))
>>> x
array([[0, 1],
[2, 3]])
>>> x.diagonal()
array([0, 3])
>>> x.diagonal(1)
array([1])
>>> x = ops.arange(8).reshape((2, 2, 2))
>>> x
array([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> x.diagonal(0, 0, 1)
array([[0, 6],
[1, 7]])
diff
function
keras.ops.diff(a, n=1, axis=-1)
Calculate the n-th discrete difference along the given axis.
The first difference is given by out[i] = a[i+1] - a[i]
along
the given axis, higher differences are calculated by using diff
recursively.
Arguments
- a: Input tensor.
- n: The number of times values are differenced. Defaults to
1
. - axis: Axis to compute discrete difference(s) along.
Defaults to
-1
.(last axis).
Returns
Tensor of diagonals.
Examples
>>> from keras.src import ops
>>> x = ops.convert_to_tensor([1, 2, 4, 7, 0])
>>> ops.diff(x)
array([ 1, 2, 3, -7])
>>> ops.diff(x, n=2)
array([ 1, 1, -10])
>>> x = ops.convert_to_tensor([[1, 3, 6, 10], [0, 5, 6, 8]])
>>> ops.diff(x)
array([[2, 3, 4],
[5, 1, 2]])
>>> ops.diff(x, axis=0)
array([[-1, 2, 0, -2]])
digitize
function
keras.ops.digitize(x, bins)
Returns the indices of the bins to which each value in x
belongs.
Arguments
- x: Input array to be binned.
- bins: Array of bins. It has to be one-dimensional and monotonically increasing.
Returns
Output array of indices, of same shape as x
.
Example
>>> x = np.array([0.0, 1.0, 3.0, 1.6])
>>> bins = np.array([0.0, 3.0, 4.5, 7.0])
>>> keras.ops.digitize(x, bins)
array([1, 1, 2, 1])
divide
function
keras.ops.divide(x1, x2)
Divide arguments element-wise.
keras.ops.true_divide
is an alias for this function.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
Output tensor, the quotient x1/x2
, element-wise.
divide_no_nan
function
keras.ops.divide_no_nan(x1, x2)
Safe element-wise division which returns 0 where the denominator is 0.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
The quotient x1/x2
, element-wise, with zero where x2 is zero.
dot
function
keras.ops.dot(x1, x2)
Dot product of two tensors.
- If both
x1
andx2
are 1-D tensors, it is inner product of vectors (without complex conjugation). - If both
x1
andx2
are 2-D tensors, it is matrix multiplication. - If either
x1
orx2
is 0-D (scalar), it is equivalent tox1 * x2
. - If
x1
is an N-D tensor andx2
is a 1-D tensor, it is a sum product over the last axis ofx1
andx2
. - If
x1
is an N-D tensor andx2
is an M-D tensor (whereM>=2
), it is a sum product over the last axis ofx1
and the second-to-last axis ofx2
:dot(x1, x2)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])
.
Arguments
- x1: First argument.
- x2: Second argument.
Note: Torch backend does not accept 0-D tensors as arguments.
Returns
Dot product of x1
and x2
.
einsum
function
keras.ops.einsum(subscripts, *operands)
Evaluates the Einstein summation convention on the operands.
Arguments
- subscripts: Specifies the subscripts for summation as comma separated
list of subscript labels. An implicit (classical Einstein
summation) calculation is performed unless the explicit indicator
->
is included as well as subscript labels of the precise output form. - operands: The operands to compute the Einstein sum of.
Returns
The calculation based on the Einstein summation convention.
Example
>>> from keras.src import ops
>>> a = ops.arange(25).reshape(5, 5)
>>> b = ops.arange(5)
>>> c = ops.arange(6).reshape(2, 3)
Trace of a matrix:
>>> ops.einsum("ii", a)
60
>>> ops.einsum(a, [0, 0])
60
>>> ops.trace(a)
60
Extract the diagonal:
>>> ops.einsum("ii -> i", a)
array([ 0, 6, 12, 18, 24])
>>> ops.einsum(a, [0, 0], [0])
array([ 0, 6, 12, 18, 24])
>>> ops.diag(a)
array([ 0, 6, 12, 18, 24])
Sum over an axis:
>>> ops.einsum("ij -> i", a)
array([ 10, 35, 60, 85, 110])
>>> ops.einsum(a, [0, 1], [0])
array([ 10, 35, 60, 85, 110])
>>> ops.sum(a, axis=1)
array([ 10, 35, 60, 85, 110])
For higher dimensional tensors summing a single axis can be done with ellipsis:
>>> ops.einsum("...j -> ...", a)
array([ 10, 35, 60, 85, 110])
>>> np.einsum(a, [..., 1], [...])
array([ 10, 35, 60, 85, 110])
Compute a matrix transpose or reorder any number of axes:
>>> ops.einsum("ji", c)
array([[0, 3],
[1, 4],
[2, 5]])
>>> ops.einsum("ij -> ji", c)
array([[0, 3],
[1, 4],
[2, 5]])
>>> ops.einsum(c, [1, 0])
array([[0, 3],
[1, 4],
[2, 5]])
>>> ops.transpose(c)
array([[0, 3],
[1, 4],
[2, 5]])
Matrix vector multiplication:
>>> ops.einsum("ij, j", a, b)
array([ 30, 80, 130, 180, 230])
>>> ops.einsum(a, [0, 1], b, [1])
array([ 30, 80, 130, 180, 230])
>>> ops.einsum("...j, j", a, b)
array([ 30, 80, 130, 180, 230])
empty
function
keras.ops.empty(shape, dtype=None)
Return a tensor of given shape and type filled with uninitialized data.
Arguments
- shape: Shape of the empty tensor.
- dtype: Desired data type of the empty tensor.
Returns
The empty tensor.
equal
function
keras.ops.equal(x1, x2)
Returns (x1 == x2)
element-wise.
Arguments
- x1: Tensor to compare.
- x2: Tensor to compare.
Returns
Output tensor, element-wise comparison of x1
and x2
.
exp
function
keras.ops.exp(x)
Calculate the exponential of all elements in the input tensor.
Arguments
- x: Input tensor.
Returns
Output tensor, element-wise exponential of x
.
expand_dims
function
keras.ops.expand_dims(x, axis)
Expand the shape of a tensor.
Insert a new axis at the axis
position in the expanded tensor shape.
Arguments
- x: Input tensor.
- axis: Position in the expanded axes where the new axis (or axes) is placed.
Returns
Output tensor with the number of dimensions increased.
expm1
function
keras.ops.expm1(x)
Calculate exp(x) - 1
for all elements in the tensor.
Arguments
- x: Input values.
Returns
Output tensor, element-wise exponential minus one.
eye
function
keras.ops.eye(N, M=None, k=0, dtype=None)
Return a 2-D tensor with ones on the diagonal and zeros elsewhere.
Arguments
- N: Number of rows in the output.
- M: Number of columns in the output. If
None
, defaults toN
. - k: Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal.
- dtype: Data type of the returned tensor.
Returns
Tensor with ones on the k-th diagonal and zeros elsewhere.
flip
function
keras.ops.flip(x, axis=None)
Reverse the order of elements in the tensor along the given axis.
The shape of the tensor is preserved, but the elements are reordered.
Arguments
- x: Input tensor.
- axis: Axis or axes along which to flip the tensor. The default,
axis=None
, will flip over all of the axes of the input tensor.
Returns
Output tensor with entries of axis
reversed.
floor
function
keras.ops.floor(x)
Return the floor of the input, element-wise.
The floor of the scalar x
is the largest integer i
, such that i <= x
.
Arguments
- x: Input tensor.
Returns
Output tensor, element-wise floor of x
.
floor_divide
function
keras.ops.floor_divide(x1, x2)
Returns the largest integer smaller or equal to the division of inputs.
Arguments
- x1: Numerator.
- x2: Denominator.
Returns
Output tensor, y = floor(x1/x2)
full
function
keras.ops.full(shape, fill_value, dtype=None)
Return a new tensor of given shape and type, filled with fill_value
.
Arguments
- shape: Shape of the new tensor.
- fill_value: Fill value.
- dtype: Desired data type of the tensor.
Returns
Output tensor.
full_like
function
keras.ops.full_like(x, fill_value, dtype=None)
Return a full tensor with the same shape and type as the given tensor.
Arguments
- x: Input tensor.
- fill_value: Fill value.
- dtype: Overrides data type of the result.
Returns
Tensor of fill_value
with the same shape and type as x
.
get_item
function
keras.ops.get_item(x, key)
Return x[key]
.
greater
function
keras.ops.greater(x1, x2)
Return the truth value of x1 > x2
element-wise.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
Output tensor, element-wise comparison of x1
and x2
.
greater_equal
function
keras.ops.greater_equal(x1, x2)
Return the truth value of x1 >= x2
element-wise.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
Output tensor, element-wise comparison of x1
and x2
.
histogram
function
keras.ops.histogram(x, bins=10, range=None)
Computes a histogram of the data tensor x
.
Arguments
- x: Input tensor.
- bins: An integer representing the number of histogram bins. Defaults to 10.
- range: A tuple representing the lower and upper range of the bins.
If not specified, it will use the min and max of
x
.
Returns
- A tuple containing:
- A tensor representing the counts of elements in each bin.
- A tensor representing the bin edges.
Example
input_tensor = np.random.rand(8) keras.ops.histogram(input_tensor) (array([1, 1, 1, 0, 0, 1, 2, 1, 0, 1], dtype=int32), array([0.0189519 , 0.10294958, 0.18694726, 0.27094494, 0.35494262,
0.43894029, 0.52293797, 0.60693565, 0.69093333, 0.77493101,
0.85892869]))
hstack
function
keras.ops.hstack(xs)
Stack tensors in sequence horizontally (column wise).
This is equivalent to concatenation along the first axis for 1-D tensors, and along the second axis for all other tensors.
Arguments
- xs: Sequence of tensors.
Returns
The tensor formed by stacking the given tensors.
identity
function
keras.ops.identity(n, dtype=None)
Return the identity tensor.
The identity tensor is a square tensor with ones on the main diagonal and zeros elsewhere.
Arguments
- n: Number of rows (and columns) in the
n x n
output tensor. - dtype: Data type of the output tensor.
Returns
The identity tensor.
imag
function
keras.ops.imag(x)
Return the imaginary part of the complex argument.
Arguments
- x: Input tensor.
Returns
The imaginary component of the complex argument.
isclose
function
keras.ops.isclose(x1, x2, rtol=1e-05, atol=1e-08, equal_nan=False)
Return whether two tensors are element-wise almost equal.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
- rtol: Relative tolerance.
- atol: Absolute tolerance.
- equal_nan: If
True
, element-wise NaNs are considered equal.
Returns
Output boolean tensor.
isfinite
function
keras.ops.isfinite(x)
Return whether a tensor is finite, element-wise.
Real values are finite when they are not NaN, not positive infinity, and not negative infinity. Complex values are finite when both their real and imaginary parts are finite.
Arguments
- x: Input tensor.
Returns
Output boolean tensor.
isinf
function
keras.ops.isinf(x)
Test element-wise for positive or negative infinity.
Arguments
- x: Input tensor.
Returns
Output boolean tensor.
isnan
function
keras.ops.isnan(x)
Test element-wise for NaN and return result as a boolean tensor.
Arguments
- x: Input tensor.
Returns
Output boolean tensor.
left_shift
function
keras.ops.left_shift(x, y)
Shift the bits of an integer to the left.
Bits are shifted to the left by appending y
0s at the right of x
.
Since the internal representation of numbers is in binary format, this
operation is equivalent to multiplying x
by 2**y
.
Arguments
- x: Input integer tensor.
- y: Input integer tensor.
Returns
Result tensor.
less
function
keras.ops.less(x1, x2)
Return the truth value of x1 < x2
element-wise.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
Output tensor, element-wise comparison of x1
and x2
.
less_equal
function
keras.ops.less_equal(x1, x2)
Return the truth value of x1 <= x2
element-wise.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
Output tensor, element-wise comparison of x1
and x2
.
linspace
function
keras.ops.linspace(
start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0
)
Return evenly spaced numbers over a specified interval.
Returns num
evenly spaced samples, calculated over the interval
[start, stop]
.
The endpoint of the interval can optionally be excluded.
Arguments
- start: The starting value of the sequence.
- stop: The end value of the sequence, unless
endpoint
is set toFalse
. In that case, the sequence consists of all but the last ofnum + 1
evenly spaced samples, so thatstop
is excluded. Note that the step size changes whenendpoint
isFalse
. - num: Number of samples to generate. Defaults to
50
. Must be non-negative. - endpoint: If
True
,stop
is the last sample. Otherwise, it is not included. Defaults toTrue
. - retstep: If
True
, return(samples, step)
, wherestep
is the spacing between samples. - dtype: The type of the output tensor.
- axis: The axis in the result to store the samples. Relevant only if
start or stop are array-like. Defaults to
0
.
Note:
Torch backend does not support axis
argument.
Returns
A tensor of evenly spaced numbers.
If retstep
is True
, returns (samples, step)
log
function
keras.ops.log(x)
Natural logarithm, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor, element-wise natural logarithm of x
.
log10
function
keras.ops.log10(x)
Return the base 10 logarithm of the input tensor, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor, element-wise base 10 logarithm of x
.
log1p
function
keras.ops.log1p(x)
Returns the natural logarithm of one plus the x
, element-wise.
Calculates log(1 + x)
.
Arguments
- x: Input tensor.
Returns
Output tensor, element-wise natural logarithm of 1 + x
.
log2
function
keras.ops.log2(x)
Base-2 logarithm of x
, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor, element-wise base-2 logarithm of x
.
logaddexp
function
keras.ops.logaddexp(x1, x2)
Logarithm of the sum of exponentiations of the inputs.
Calculates log(exp(x1) + exp(x2))
.
Arguments
- x1: Input tensor.
- x2: Input tensor.
Returns
Output tensor, element-wise logarithm of the sum of exponentiations of the inputs.
logical_and
function
keras.ops.logical_and(x1, x2)
Computes the element-wise logical AND of the given input tensors.
Zeros are treated as False
and non-zeros are treated as True
.
Arguments
- x1: Input tensor.
- x2: Input tensor.
Returns
Output tensor, element-wise logical AND of the inputs.
logical_not
function
keras.ops.logical_not(x)
Computes the element-wise NOT of the given input tensor.
Zeros are treated as False
and non-zeros are treated as True
.
Arguments
- x: Input tensor.
Returns
Output tensor, element-wise logical NOT of the input.
logical_or
function
keras.ops.logical_or(x1, x2)
Computes the element-wise logical OR of the given input tensors.
Zeros are treated as False
and non-zeros are treated as True
.
Arguments
- x1: Input tensor.
- x2: Input tensor.
Returns
Output tensor, element-wise logical OR of the inputs.
logical_xor
function
keras.ops.logical_xor(x1, x2)
Compute the truth value of x1 XOR x2
, element-wise.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
Output boolean tensor.
logspace
function
keras.ops.logspace(start, stop, num=50, endpoint=True, base=10, dtype=None, axis=0)
Returns numbers spaced evenly on a log scale.
In linear space, the sequence starts at base ** start
and ends with
base ** stop
(see endpoint
below).
Arguments
- start: The starting value of the sequence.
- stop: The final value of the sequence, unless
endpoint
isFalse
. In that case,num + 1
values are spaced over the interval in log-space, of which all but the last (a sequence of lengthnum
) are returned. - num: Number of samples to generate. Defaults to
50
. - endpoint: If
True
,stop
is the last sample. Otherwise, it is not included. Defaults toTrue
. - base: The base of the log space. Defaults to
10
. - dtype: The type of the output tensor.
- axis: The axis in the result to store the samples. Relevant only if start or stop are array-like.
Note:
Torch backend does not support axis
argument.
Returns
A tensor of evenly spaced samples on a log scale.
matmul
function
keras.ops.matmul(x1, x2)
Matrix product of two tensors.
- If both tensors are 1-dimensional, the dot product (scalar) is returned.
- If either tensor is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly.
- If the first tensor is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
- If the second tensor is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
Arguments
- x1: First tensor.
- x2: Second tensor.
Returns
Output tensor, matrix product of the inputs.
max
function
keras.ops.max(x, axis=None, keepdims=False, initial=None)
Return the maximum of a tensor or maximum along an axis.
Arguments
- x: Input tensor.
- axis: Axis or axes along which to operate. By default, flattened input is used.
- keepdims: If this is set to
True
, the axes which are reduced are left in the result as dimensions with size one. Defaults toFalse
. - initial: The minimum value of an output element. Defaults to
None
.
Returns
Maximum of x
.
maximum
function
keras.ops.maximum(x1, x2)
Element-wise maximum of x1
and x2
.
Arguments
- x1: First tensor.
- x2: Second tensor.
Returns
Output tensor, element-wise maximum of x1
and x2
.
mean
function
keras.ops.mean(x, axis=None, keepdims=False)
Compute the arithmetic mean along the specified axes.
Arguments
- x: Input tensor.
- axis: Axis or axes along which the means are computed. The default is to compute the mean of the flattened tensor.
- keepdims: If this is set to
True
, the axes which are reduced are left in the result as dimensions with size one.
Returns
Output tensor containing the mean values.
median
function
keras.ops.median(x, axis=None, keepdims=False)
Compute the median along the specified axis.
Arguments
- x: Input tensor.
- axis: Axis or axes along which the medians are computed. Defaults to
axis=None
which is to compute the median(s) along a flattened version of the array. - keepdims: If this is set to
True
, the axes which are reduce are left in the result as dimensions with size one.
Returns
The output tensor.
meshgrid
function
keras.ops.meshgrid(*x, indexing="xy")
Creates grids of coordinates from coordinate vectors.
Given N
1-D tensors T0, T1, ..., TN-1
as inputs with corresponding
lengths S0, S1, ..., SN-1
, this creates an N
N-dimensional tensors
G0, G1, ..., GN-1
each with shape (S0, ..., SN-1)
where the output
Gi
is constructed by expanding Ti
to the result shape.
Arguments
- x: 1-D tensors representing the coordinates of a grid.
- indexing:
"xy"
or"ij"
. “xy” is cartesian;"ij"
is matrix indexing of output. Defaults to"xy"
.
Returns
Sequence of N tensors.
Example
>>> from keras.src import ops
>>> x = ops.array([1, 2, 3])
>>> y = ops.array([4, 5, 6])
>>> grid_x, grid_y = ops.meshgrid(x, y, indexing="ij")
>>> grid_x
array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
>>> grid_y
array([[4, 5, 6],
[4, 5, 6],
[4, 5, 6]])
min
function
keras.ops.min(x, axis=None, keepdims=False, initial=None)
Return the minimum of a tensor or minimum along an axis.
Arguments
- x: Input tensor.
- axis: Axis or axes along which to operate. By default, flattened input is used.
- keepdims: If this is set to
True
, the axes which are reduced are left in the result as dimensions with size one. Defaults toFalse
. - initial: The maximum value of an output element. Defaults to
None
.
Returns
Minimum of x
.
minimum
function
keras.ops.minimum(x1, x2)
Element-wise minimum of x1
and x2
.
Arguments
- x1: First tensor.
- x2: Second tensor.
Returns
Output tensor, element-wise minimum of x1
and x2
.
mod
function
keras.ops.mod(x1, x2)
Returns the element-wise remainder of division.
Arguments
- x1: First tensor.
- x2: Second tensor.
Returns
Output tensor, element-wise remainder of division.
moveaxis
function
keras.ops.moveaxis(x, source, destination)
Move axes of a tensor to new positions.
Other axes remain in their original order.
Arguments
- x: Tensor whose axes should be reordered.
- source: Original positions of the axes to move. These must be unique.
- destination: Destinations positions for each of the original axes. These must also be unique.
Returns
Tensor with moved axes.
multiply
function
keras.ops.multiply(x1, x2)
Multiply arguments element-wise.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
Output tensor, element-wise product of x1
and x2
.
nan_to_num
function
keras.ops.nan_to_num(x, nan=0.0, posinf=None, neginf=None)
Replace NaN with zero and infinity with large finite numbers.
Arguments
- x: Input data.
- nan: Optional float or int. Value to replace
NaN
entries with. - posinf: Optional float or int. Value to replace positive infinity with.
- neginf: Optional float or int. Value to replace negative infinity with.
Returns
x
, with non-finite values replaced.
ndim
function
keras.ops.ndim(x)
Return the number of dimensions of a tensor.
Arguments
- x: Input tensor.
Returns
The number of dimensions in x
.
negative
function
keras.ops.negative(x)
Numerical negative, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor, y = -x
.
nonzero
function
keras.ops.nonzero(x)
Return the indices of the elements that are non-zero.
Arguments
- x: Input tensor.
Returns
Indices of elements that are non-zero.
norm
function
keras.ops.norm(x, ord=None, axis=None, keepdims=False)
Matrix or vector norm.
This function is able to return one of eight different matrix norms, or one
of an infinite number of vector norms (described below), depending on the
value of the ord
parameter.
Arguments
- x: Input tensor.
- ord: Order of the norm (see table under Notes). The default is
None
. - axis: If
axis
is an integer, it specifies the axis ofx
along which to compute the vector norms. Ifaxis
is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. - keepdims: If this is set to
True
, the axes which are reduced are left in the result as dimensions with size one.
Note:
For values of ord < 1
, the result is, strictly speaking, not a
mathematical ’norm’, but it may still be useful for various numerical
purposes. The following norms can be calculated:
- For matrices:
ord=None
: Frobenius normord="fro"
: Frobenius normord="nuc"
: nuclear normord=np.inf
:max(sum(abs(x), axis=1))
ord=-np.inf
:min(sum(abs(x), axis=1))
ord=0
: not supportedord=1
:max(sum(abs(x), axis=0))
ord=-1
:min(sum(abs(x), axis=0))
ord=2
: 2-norm (largest sing. value)ord=-2
: smallest singular value- other: not supported
- For vectors:
ord=None
: 2-normord="fro"
: not supportedord="nuc"
: not supportedord=np.inf
:max(abs(x))
ord=-np.inf
:min(abs(x))
ord=0
:sum(x != 0)
ord=1
: as beloword=-1
: as beloword=2
: as beloword=-2
: as below- other:
sum(abs(x)**ord)**(1./ord)
Returns
Norm of the matrix or vector(s).
Example
>>> x = keras.ops.reshape(keras.ops.arange(9, dtype="float32") - 4, (3, 3))
>>> keras.ops.linalg.norm(x)
7.7459664
not_equal
function
keras.ops.not_equal(x1, x2)
Return (x1 != x2)
element-wise.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
Output tensor, element-wise comparsion of x1
and x2
.
ones
function
keras.ops.ones(shape, dtype=None)
Return a new tensor of given shape and type, filled with ones.
Arguments
- shape: Shape of the new tensor.
- dtype: Desired data type of the tensor.
Returns
Tensor of ones with the given shape and dtype.
ones_like
function
keras.ops.ones_like(x, dtype=None)
Return a tensor of ones with the same shape and type of x
.
Arguments
- x: Input tensor.
- dtype: Overrides the data type of the result.
Returns
A tensor of ones with the same shape and type as x
.
outer
function
keras.ops.outer(x1, x2)
Compute the outer product of two vectors.
Given two vectors x1
and x2
, the outer product is:
out[i, j] = x1[i] * x2[j]
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
Outer product of x1
and x2
.
pad
function
keras.ops.pad(x, pad_width, mode="constant", constant_values=None)
Pad a tensor.
Arguments
- x: Tensor to pad.
- pad_width: Number of values padded to the edges of each axis.
((before_1, after_1), ...(before_N, after_N))
unique pad widths for each axis.((before, after),)
yields same before and after pad for each axis.(pad,)
orint
is a shortcut forbefore = after = pad
width for all axes. - mode: One of
"constant"
,"edge"
,"linear_ramp"
,"maximum"
,"mean"
,"median"
,"minimum"
,"reflect"
,"symmetric"
,"wrap"
,"empty"
,"circular"
. Defaults to"constant"
. - constant_values: value to pad with if
mode == "constant"
. Defaults to0
. AValueError
is raised if not None andmode != "constant"
.
Note:
Torch backend only supports modes "constant"
, "reflect"
,
"symmetric"
and "circular"
.
Only Torch backend supports "circular"
mode.
Note:
Tensorflow backend only supports modes "constant"
, "reflect"
and "symmetric"
.
Returns
Padded tensor.
power
function
keras.ops.power(x1, x2)
First tensor elements raised to powers from second tensor, element-wise.
Arguments
- x1: The bases.
- x2: The exponents.
Returns
Output tensor, the bases in x1
raised to the exponents in x2
.
prod
function
keras.ops.prod(x, axis=None, keepdims=False, dtype=None)
Return the product of tensor elements over a given axis.
Arguments
- x: Input tensor.
- axis: Axis or axes along which a product is performed. The default,
axis=None
, will compute the product of all elements in the input tensor. - keepdims: If this is set to
True
, the axes which are reduce are left in the result as dimensions with size one. - dtype: Data type of the returned tensor.
Returns
Product of elements of x
over the given axis or axes.
quantile
function
keras.ops.quantile(x, q, axis=None, method="linear", keepdims=False)
Compute the q-th quantile(s) of the data along the specified axis.
Arguments
- x: Input tensor.
- q: Probability or sequence of probabilities for the quantiles to compute. Values must be between 0 and 1 inclusive.
- axis: Axis or axes along which the quantiles are computed. Defaults to
axis=None
which is to compute the quantile(s) along a flattened version of the array. - method: A string specifies the method to use for estimating the
quantile. Available methods are
"linear"
,"lower"
,"higher"
,"midpoint"
, and"nearest"
. Defaults to"linear"
. If the desired quantile lies between two data pointsi < j
:"linear"
:i + (j - i) * fraction
, where fraction is the fractional part of the index surrounded byi
andj
."lower"
:i
."higher"
:j
."midpoint"
:(i + j) / 2
"nearest"
:i
orj
, whichever is nearest.
- keepdims: If this is set to
True
, the axes which are reduce are left in the result as dimensions with size one.
Returns
The quantile(s). If q
is a single probability and axis=None
, then
the result is a scalar. If multiple probabilies levels are given, first
axis of the result corresponds to the quantiles. The other axes are the
axes that remain after the reduction of x
.
ravel
function
keras.ops.ravel(x)
Return a contiguous flattened tensor.
A 1-D tensor, containing the elements of the input, is returned.
Arguments
- x: Input tensor.
Returns
Output tensor.
real
function
keras.ops.real(x)
Return the real part of the complex argument.
Arguments
- x: Input tensor.
Returns
The real component of the complex argument.
reciprocal
function
keras.ops.reciprocal(x)
Return the reciprocal of the argument, element-wise.
Calculates 1/x
.
Arguments
- x: Input tensor.
Returns
Output tensor, element-wise reciprocal of x
.
repeat
function
keras.ops.repeat(x, repeats, axis=None)
Repeat each element of a tensor after themselves.
Arguments
- x: Input tensor.
- repeats: The number of repetitions for each element.
- axis: The axis along which to repeat values. By default, use the flattened input array, and return a flat output array.
Returns
Output tensor.
reshape
function
keras.ops.reshape(x, newshape)
Gives a new shape to a tensor without changing its data.
Arguments
- x: Input tensor.
- newshape: The new shape should be compatible with the original shape. One shape dimension can be -1 in which case the value is inferred from the length of the array and remaining dimensions.
Returns
The reshaped tensor.
right_shift
function
keras.ops.right_shift(x, y)
Shift the bits of an integer to the right.
Bits are shifted to the right y
. Because the internal representation of
numbers is in binary format, this operation is equivalent to dividing x
by
2**y
.
Arguments
- x: Input integer tensor.
- y: Input integer tensor.
Returns
Result tensor.
roll
function
keras.ops.roll(x, shift, axis=None)
Roll tensor elements along a given axis.
Elements that roll beyond the last position are re-introduced at the first.
Arguments
- x: Input tensor.
- shift: The number of places by which elements are shifted.
- axis: The axis along which elements are shifted. By default, the array is flattened before shifting, after which the original shape is restored.
Returns
Output tensor.
round
function
keras.ops.round(x, decimals=0)
Evenly round to the given number of decimals.
Arguments
- x: Input tensor.
- decimals: Number of decimal places to round to. Defaults to
0
.
Returns
Output tensor.
searchsorted
function
keras.ops.searchsorted(sorted_sequence, values, side="left")
Perform a binary search, returning indices for insertion of values
into sorted_sequence
that maintain the sorting order.
Arguments
- sorted_sequence: 1-D input tensor, sorted along the innermost dimension.
- values: N-D tensor of query insertion values.
- side: ’left’ or ‘right’, specifying the direction in which to insert for the equality case (tie-breaker).
Returns
Tensor of insertion indices of same shape as values
.
select
function
keras.ops.select(condlist, choicelist, default=0)
Return elements from choicelist
, based on conditions in condlist
.
Arguments
- condlist: List of boolean tensors. The list of conditions which determine from which array in choicelist the output elements are taken. When multiple conditions are satisfied, the first one encountered in condlist is used.
- choicelist: List of tensors.
The list of tensors from which the output elements are taken.
This list has to be of the same length as
condlist
. - defaults: Optional scalar value.
The element inserted in the output
when all conditions evaluate to
False
.
Returns
Tensor where the output at position m
is the m
-th element
of the tensor in choicelist
where the m
-th element of the
corresponding tensor in condlist
is True
.
Example
from keras import ops
x = ops.arange(6)
condlist = [x<3, x>3]
choicelist = [x, x**2]
ops.select(condlist, choicelist, 42)
sign
function
keras.ops.sign(x)
Returns a tensor with the signs of the elements of x
.
Arguments
- x: Input tensor.
Returns
Output tensor of same shape as x
.
sin
function
keras.ops.sin(x)
Trigonometric sine, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor of same shape as x
.
sinh
function
keras.ops.sinh(x)
Hyperbolic sine, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor of same shape as x
.
size
function
keras.ops.size(x)
Return the number of elements in a tensor.
Arguments
- x: Input tensor.
Returns
Number of elements in x
.
slogdet
function
keras.ops.slogdet(x)
Compute the sign and natural logarithm of the determinant of a matrix.
Arguments
- x: Input matrix. It must 2D and square.
Returns
A tuple (sign, logabsdet)
. sign
is a number representing
the sign of the determinant. For a real matrix, this is 1, 0, or -1.
For a complex matrix, this is a complex number with absolute value 1
(i.e., it is on the unit circle), or else 0.
logabsdet
is the natural log of the absolute value of the determinant.
sort
function
keras.ops.sort(x, axis=-1)
Sorts the elements of x
along a given axis in ascending order.
Arguments
- x: Input tensor.
- axis: Axis along which to sort. If
None
, the tensor is flattened before sorting. Defaults to-1
; the last axis.
Returns
Sorted tensor.
split
function
keras.ops.split(x, indices_or_sections, axis=0)
Split a tensor into chunks.
Arguments
- x: Input tensor.
- indices_or_sections: If an integer, N, the tensor will be split into N
equal sections along
axis
. If a 1-D array of sorted integers, the entries indicate indices at which the tensor will be split alongaxis
. - axis: Axis along which to split. Defaults to
0
.
Note: A split does not have to result in equal division when using Torch backend.
Returns
A list of tensors.
sqrt
function
keras.ops.sqrt(x)
Return the non-negative square root of a tensor, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor, the non-negative square root of x
.
square
function
keras.ops.square(x)
Return the element-wise square of the input.
Arguments
- x: Input tensor.
Returns
Output tensor, the square of x
.
squeeze
function
keras.ops.squeeze(x, axis=None)
Remove axes of length one from x
.
Arguments
- x: Input tensor.
- axis: Select a subset of the entries of length one in the shape.
Returns
The input tensor with all or a subset of the dimensions of length 1 removed.
stack
function
keras.ops.stack(x, axis=0)
Join a sequence of tensors along a new axis.
The axis
parameter specifies the index of the new axis in the
dimensions of the result.
Arguments
- x: A sequence of tensors.
- axis: Axis along which to stack. Defaults to
0
.
Returns
The stacked tensor.
std
function
keras.ops.std(x, axis=None, keepdims=False)
Compute the standard deviation along the specified axis.
Arguments
- x: Input tensor.
- axis: Axis along which to compute standard deviation. Default is to compute the standard deviation of the flattened tensor.
- keepdims: If this is set to
True
, the axes which are reduced are left in the result as dimensions with size one.
Returns
Output tensor containing the standard deviation values.
subtract
function
keras.ops.subtract(x1, x2)
Subtract arguments element-wise.
Arguments
- x1: First input tensor.
- x2: Second input tensor.
Returns
Output tensor, element-wise difference of x1
and x2
.
sum
function
keras.ops.sum(x, axis=None, keepdims=False)
Sum of a tensor over the given axes.
Arguments
- x: Input tensor.
- axis: Axis or axes along which the sum is computed. The default is to compute the sum of the flattened tensor.
- keepdims: If this is set to
True
, the axes which are reduced are left in the result as dimensions with size one.
Returns
Output tensor containing the sum.
swapaxes
function
keras.ops.swapaxes(x, axis1, axis2)
Interchange two axes of a tensor.
Arguments
- x: Input tensor.
- axis1: First axis.
- axis2: Second axis.
Returns
A tensor with the axes swapped.
take
function
keras.ops.take(x, indices, axis=None)
Take elements from a tensor along an axis.
Arguments
- x: Source tensor.
- indices: The indices of the values to extract.
- axis: The axis over which to select values. By default, the flattened input tensor is used.
Returns
The corresponding tensor of values.
take_along_axis
function
keras.ops.take_along_axis(x, indices, axis=None)
Select values from x
at the 1-D indices
along the given axis.
Arguments
- x: Source tensor.
- indices: The indices of the values to extract.
- axis: The axis over which to select values. By default, the flattened input tensor is used.
Returns
The corresponding tensor of values.
tan
function
keras.ops.tan(x)
Compute tangent, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor of same shape as x
.
tanh
function
keras.ops.tanh(x)
Hyperbolic tangent, element-wise.
Arguments
- x: Input tensor.
Returns
Output tensor of same shape as x
.
tensordot
function
keras.ops.tensordot(x1, x2, axes=2)
Compute the tensor dot product along specified axes.
Arguments
- x1: First tensor.
- x2: Second tensor.
- axes: - If an integer, N, sum over the last N axes of
x1
and the first N axes ofx2
in order. The sizes of the corresponding axes must match.- Or, a list of axes to be summed over, first sequence applying
to
x1
, second tox2
. Both sequences must be of the same length.
- Or, a list of axes to be summed over, first sequence applying
to
Returns
The tensor dot product of the inputs.
tile
function
keras.ops.tile(x, repeats)
Repeat x
the number of times given by repeats
.
If repeats
has length d
, the result will have dimension of
max(d, x.ndim)
.
If x.ndim < d
, x
is promoted to be d-dimensional by prepending
new axes.
If x.ndim > d
, repeats
is promoted to x.ndim
by prepending 1’s to it.
Arguments
- x: Input tensor.
- repeats: The number of repetitions of
x
along each axis.
Returns
The tiled output tensor.
trace
function
keras.ops.trace(x, offset=0, axis1=0, axis2=1)
Return the sum along diagonals of the tensor.
If x
is 2-D, the sum along its diagonal with the given offset is
returned, i.e., the sum of elements x[i, i+offset]
for all i
.
If a has more than two dimensions, then the axes specified by axis1
and axis2
are used to determine the 2-D sub-arrays whose traces are
returned.
The shape of the resulting tensor is the same as that of x
with axis1
and axis2
removed.
Arguments
- x: Input tensor.
- offset: Offset of the diagonal from the main diagonal. Can be
both positive and negative. Defaults to
0
. - axis1: Axis to be used as the first axis of the 2-D sub-arrays.
Defaults to
0
.(first axis). - axis2: Axis to be used as the second axis of the 2-D sub-arrays.
Defaults to
1
(second axis).
Returns
If x
is 2-D, the sum of the diagonal is returned. If x
has
larger dimensions, then a tensor of sums along diagonals is
returned.
transpose
function
keras.ops.transpose(x, axes=None)
Returns a tensor with axes
transposed.
Arguments
- x: Input tensor.
- axes: Sequence of integers. Permutation of the dimensions of
x
. By default, the order of the axes are reversed.
Returns
x
with its axes permuted.
tri
function
keras.ops.tri(N, M=None, k=0, dtype=None)
Return a tensor with ones at and below a diagonal and zeros elsewhere.
Arguments
- N: Number of rows in the tensor.
- M: Number of columns in the tensor.
- k: The sub-diagonal at and below which the array is filled.
k = 0
is the main diagonal, whilek < 0
is below it, andk > 0
is above. The default is 0. - dtype: Data type of the returned tensor. The default is “float32”.
Returns
Tensor with its lower triangle filled with ones and zeros elsewhere.
T[i, j] == 1
for j <= i + k
, 0 otherwise.
tril
function
keras.ops.tril(x, k=0)
Return lower triangle of a tensor.
For tensors with ndim
exceeding 2, tril
will apply to the
final two axes.
Arguments
- x: Input tensor.
- k: Diagonal above which to zero elements. Defaults to
0
. the main diagonal.k < 0
is below it, andk > 0
is above it.
Returns
Lower triangle of x
, of same shape and data type as x
.
triu
function
keras.ops.triu(x, k=0)
Return upper triangle of a tensor.
For tensors with ndim
exceeding 2, triu
will apply to the
final two axes.
Arguments
- x: Input tensor.
- k: Diagonal below which to zero elements. Defaults to
0
. the main diagonal.k < 0
is below it, andk > 0
is above it.
Returns
Upper triangle of x
, of same shape and data type as x
.
true_divide
function
keras.ops.true_divide(x1, x2)
Alias for keras.ops.divide
.
trunc
function
keras.ops.trunc(x)
Return the truncated value of the input, element-wise.
The truncated value of the scalar x
is the nearest integer i
which is
closer to zero than x
is. In short, the fractional part of the signed
number x
is discarded.
Arguments
- x: Input tensor.
Returns
The truncated value of each element in x
.
Example
>>> x = ops.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
>>> ops.trunc(x)
array([-1.0, -1.0, -0.0, 0.0, 1.0, 1.0, 2.0])
var
function
keras.ops.var(x, axis=None, keepdims=False)
Compute the variance along the specified axes.
Arguments
- x: Input tensor.
- axis: Axis or axes along which the variance is computed. The default is to compute the variance of the flattened tensor.
- keepdims: If this is set to
True
, the axes which are reduced are left in the result as dimensions with size one.
Returns
Output tensor containing the variance.
vdot
function
keras.ops.vdot(x1, x2)
Return the dot product of two vectors.
If the first argument is complex, the complex conjugate of the first argument is used for the calculation of the dot product.
Multidimensional tensors are flattened before the dot product is taken.
Arguments
- x1: First input tensor. If complex, its complex conjugate is taken before calculation of the dot product.
- x2: Second input tensor.
Returns
Output tensor.
vectorize
function
keras.ops.vectorize(pyfunc, excluded=None, signature=None)
Turn a function into a vectorized function.
Example
def myfunc(a, b):
return a + b
vfunc = keras.ops.vectorize(myfunc)
y = vfunc([1, 2, 3, 4], 2) # Returns Tensor([3, 4, 5, 6])
Arguments
- pyfunc: Callable of a single tensor argument.
- excluded: Optional set of integers representing
positional arguments for which the function
will not be vectorized.
These will be passed directly to
pyfunc
unmodified. - signature: Optional generalized universal function signature,
e.g.,
"(m,n),(n)->(m)"
for vectorized matrix-vector multiplication. If provided,pyfunc
will be called with (and expected to return) arrays with shapes given by the size of corresponding core dimensions. By default,pyfunc
is assumed to take scalars tensors as input and output.
Returns
A new function that applies pyfunc
to every element
of its input along axis 0 (the batch axis).
vstack
function
keras.ops.vstack(xs)
Stack tensors in sequence vertically (row wise).
Arguments
- xs: Sequence of tensors.
Returns
Tensor formed by stacking the given tensors.
where
function
keras.ops.where(condition, x1=None, x2=None)
Return elements chosen from x1
or x2
depending on condition
.
Arguments
- condition: Where
True
, yieldx1
, otherwise yieldx2
. - x1: Values from which to choose when
condition
isTrue
. - x2: Values from which to choose when
condition
isFalse
.
Returns
A tensor with elements from x1
where condition
is True
, and
elements from x2
where condition
is False
.
zeros
function
keras.ops.zeros(shape, dtype=None)
Return a new tensor of given shape and type, filled with zeros.
Arguments
- shape: Shape of the new tensor.
- dtype: Desired data type of the tensor.
Returns
Tensor of zeros with the given shape and dtype.
zeros_like
function
keras.ops.zeros_like(x, dtype=None)
Return a tensor of zeros with the same shape and type as x
.
Arguments
- x: Input tensor.
- dtype: Overrides the data type of the result.
Returns
A tensor of zeros with the same shape and type as x
.