The Sequential class
- Original Link : https://keras.io/api/models/sequential/
- Last Checked at : 2024-11-24
Sequential
class
keras.Sequential(layers=None, trainable=True, name=None)
Sequential
groups a linear stack of layers into a Model
.
Examples
model = keras.Sequential()
model.add(keras.Input(shape=(16,)))
model.add(keras.layers.Dense(8))
# Note that you can also omit the initial `Input`.
# In that case the model doesn't have any weights until the first call
# to a training/evaluation method (since it isn't yet built):
model = keras.Sequential()
model.add(keras.layers.Dense(8))
model.add(keras.layers.Dense(4))
# model.weights not created yet
# Whereas if you specify an `Input`, the model gets built
# continuously as you are adding layers:
model = keras.Sequential()
model.add(keras.Input(shape=(16,)))
model.add(keras.layers.Dense(8))
len(model.weights) # Returns "2"
# When using the delayed-build pattern (no input shape specified), you can
# choose to manually build your model by calling
# `build(batch_input_shape)`:
model = keras.Sequential()
model.add(keras.layers.Dense(8))
model.add(keras.layers.Dense(4))
model.build((None, 16))
len(model.weights) # Returns "4"
# Note that when using the delayed-build pattern (no input shape specified),
# the model gets built the first time you call `fit`, `eval`, or `predict`,
# or the first time you call the model on some input data.
model = keras.Sequential()
model.add(keras.layers.Dense(8))
model.add(keras.layers.Dense(1))
model.compile(optimizer='sgd', loss='mse')
# This builds the model for the first time:
model.fit(x, y, batch_size=32, epochs=10)
add
method
Sequential.add(layer, rebuild=True)
Adds a layer instance on top of the layer stack.
Arguments
- layer: layer instance.
pop
method
Sequential.pop(rebuild=True)
Removes the last layer in the model.