Base Metric class

source

Metric class

keras.metrics.Metric(dtype=None, name=None)

Encapsulates metric logic and state.

Arguments

  • name: Optional name for the metric instance.
  • dtype: The dtype of the metric’s computations. Defaults to None, which means using keras.backend.floatx(). keras.backend.floatx() is a "float32" unless set to different value (via keras.backend.set_floatx()). If a keras.DTypePolicy is provided, then the compute_dtype will be utilized.

Example

m = SomeMetric(...)
for input in ...:
    m.update_state(input)
print('Final result: ', m.result())

Usage with compile() API:

model = keras.Sequential()
model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dense(10, activation='softmax'))
model.compile(optimizer=keras.optimizers.RMSprop(0.01),
              loss=keras.losses.CategoricalCrossentropy(),
              metrics=[keras.metrics.CategoricalAccuracy()])
data = np.random.random((1000, 32))
labels = np.random.random((1000, 10))
model.fit(data, labels, epochs=10)

To be implemented by subclasses:

  • __init__(): All state variables should be created in this method by calling self.add_variable() like: self.var = self.add_variable(...)
  • update_state(): Has all updates to the state variables like: self.var.assign(...).
  • result(): Computes and returns a scalar value or a dict of scalar values for the metric from the state variables.

Example subclass implementation:

class BinaryTruePositives(Metric):
    def __init__(self, name='binary_true_positives', **kwargs):
        super().__init__(name=name, **kwargs)
        self.true_positives = self.add_variable(
            shape=(),
            initializer='zeros',
            name='true_positives'
        )
    def update_state(self, y_true, y_pred, sample_weight=None):
        y_true = ops.cast(y_true, "bool")
        y_pred = ops.cast(y_pred, "bool")
        values = ops.logical_and(
            ops.equal(y_true, True), ops.equal(y_pred, True))
        values = ops.cast(values, self.dtype)
        if sample_weight is not None:
            sample_weight = ops.cast(sample_weight, self.dtype)
            sample_weight = ops.broadcast_to(
                sample_weight, ops.shape(values)
            )
            values = ops.multiply(values, sample_weight)
        self.true_positives.assign(self.true_positives + ops.sum(values))
    def result(self):
        return self.true_positives