UpSampling2D layer
- Original Link : https://keras.io/api/layers/reshaping_layers/up_sampling2d/
- Last Checked at : 2024-11-25
UpSampling2D
class
keras.layers.UpSampling2D(
size=(2, 2), data_format=None, interpolation="nearest", **kwargs
)
Upsampling layer for 2D inputs.
The implementation uses interpolative resizing, given the resize method (specified by the interpolation
argument). Use interpolation=nearest
to repeat the rows and columns of the data.
Example
>>> input_shape = (2, 2, 1, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> print(x)
[[[[ 0 1 2]]
[[ 3 4 5]]]
[[[ 6 7 8]]
[[ 9 10 11]]]]
>>> y = keras.layers.UpSampling2D(size=(1, 2))(x)
>>> print(y)
[[[[ 0 1 2]
[ 0 1 2]]
[[ 3 4 5]
[ 3 4 5]]]
[[[ 6 7 8]
[ 6 7 8]]
[[ 9 10 11]
[ 9 10 11]]]]
Arguments
- size: Int, or tuple of 2 integers. The upsampling factors for rows and columns.
- data_format: A string, one of
"channels_last"
(default) or"channels_first"
. The ordering of the dimensions in the inputs."channels_last"
corresponds to inputs with shape(batch_size, height, width, channels)
while"channels_first"
corresponds to inputs with shape(batch_size, channels, height, width)
. When unspecified, usesimage_data_format
value found in your Keras config file at~/.keras/keras.json
(if exists) else"channels_last"
. Defaults to"channels_last"
. - interpolation: A string, one of
"bicubic"
,"bilinear"
,"lanczos3"
,"lanczos5"
,"nearest"
.
Input shape
4D tensor with shape: - If data_format
is "channels_last"
: (batch_size, rows, cols, channels)
- If data_format
is "channels_first"
: (batch_size, channels, rows, cols)
Output shape
4D tensor with shape: - If data_format
is "channels_last"
: (batch_size, upsampled_rows, upsampled_cols, channels)
- If data_format
is "channels_first"
: (batch_size, channels, upsampled_rows, upsampled_cols)