Spectral Normalization layer
Spectral Normalization layer
- Original Link : https://keras.io/api/layers/preprocessing_layers/numerical/spectral_normalization/
- Last Checked at : 2024-11-25
SpectralNormalization
class
keras.layers.SpectralNormalization(layer, power_iterations=1, **kwargs)
Performs spectral normalization on the weights of a target layer.
This wrapper controls the Lipschitz constant of the weights of a layer by constraining their spectral norm, which can stabilize the training of GANs.
Arguments
- layer: A
keras.layers.Layer
instance that has either akernel
(e.g.Conv2D
,Dense
…) or anembeddings
attribute (Embedding
layer). - power_iterations: int, the number of iterations during normalization.
- **kwargs: Base wrapper keyword arguments.
Examples
Wrap keras.layers.Conv2D
:
>>> x = np.random.rand(1, 10, 10, 1)
>>> conv2d = SpectralNormalization(keras.layers.Conv2D(2, 2))
>>> y = conv2d(x)
>>> y.shape
(1, 9, 9, 2)
Wrap keras.layers.Dense
:
>>> x = np.random.rand(1, 10, 10, 1)
>>> dense = SpectralNormalization(keras.layers.Dense(10))
>>> y = dense(x)
>>> y.shape
(1, 10, 10, 10)
Reference