MaxPooling1D layer
- Original Link : https://keras.io/api/layers/pooling_layers/max_pooling1d/
- Last Checked at : 2024-11-24
MaxPooling1D
class
keras.layers.MaxPooling1D(
pool_size=2, strides=None, padding="valid", data_format=None, name=None, **kwargs
)
Max pooling operation for 1D temporal data.
Downsamples the input representation by taking the maximum value over a spatial window of size pool_size
. The window is shifted by strides
.
The resulting output when using the "valid"
padding option has a shape of: output_shape = (input_shape - pool_size + 1) / strides)
.
The resulting output shape when using the "same"
padding option is: output_shape = input_shape / strides
Arguments
- pool_size: int, size of the max pooling window.
- strides: int or None. Specifies how much the pooling window moves for each pooling step. If None, it will default to
pool_size
. - padding: string, either
"valid"
or"same"
(case-insensitive)."valid"
means no padding."same"
results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. - data_format: string, either
"channels_last"
or"channels_first"
. The ordering of the dimensions in the inputs."channels_last"
corresponds to inputs with shape(batch, steps, features)
while"channels_first"
corresponds to inputs with shape(batch, features, steps)
. It defaults to theimage_data_format
value found in your Keras config file at~/.keras/keras.json
. If you never set it, then it will be"channels_last"
.
Input shape
- If
data_format="channels_last"
: 3D tensor with shape(batch_size, steps, features)
. - If
data_format="channels_first"
: 3D tensor with shape(batch_size, features, steps)
.
Output shape
- If
data_format="channels_last"
: 3D tensor with shape(batch_size, downsampled_steps, features)
. - If
data_format="channels_first"
: 3D tensor with shape(batch_size, features, downsampled_steps)
.
Examples
strides=1
and padding="valid"
:
>>> x = np.array([1., 2., 3., 4., 5.])
>>> x = np.reshape(x, [1, 5, 1])
>>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2,
... strides=1, padding="valid")
>>> max_pool_1d(x)
strides=2
and padding="valid"
:
>>> x = np.array([1., 2., 3., 4., 5.])
>>> x = np.reshape(x, [1, 5, 1])
>>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2,
... strides=2, padding="valid")
>>> max_pool_1d(x)
strides=1
and padding="same"
:
>>> x = np.array([1., 2., 3., 4., 5.])
>>> x = np.reshape(x, [1, 5, 1])
>>> max_pool_1d = keras.layers.MaxPooling1D(pool_size=2,
... strides=1, padding="same")
>>> max_pool_1d(x)