AveragePooling1D layer
- Original Link : https://keras.io/api/layers/pooling_layers/average_pooling1d/
- Last Checked at : 2024-11-24
AveragePooling1D class
keras.layers.AveragePooling1D(
pool_size, strides=None, padding="valid", data_format=None, name=None, **kwargs
)Average pooling for temporal data.
Downsamples the input representation by taking the average value over the window defined by pool_size. The window is shifted by strides. The resulting output when using “valid” padding option has a shape of: output_shape = (input_shape - pool_size + 1) / strides)
The resulting output shape when using the “same” padding option is: output_shape = input_shape / strides
Arguments
- pool_size: int, size of the max pooling window.
- strides: int or None. Specifies how much the pooling window moves for each pooling step. If None, it will default to
pool_size. - padding: string, either
"valid"or"same"(case-insensitive)."valid"means no padding."same"results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. - data_format: string, either
"channels_last"or"channels_first". The ordering of the dimensions in the inputs."channels_last"corresponds to inputs with shape(batch, steps, features)while"channels_first"corresponds to inputs with shape(batch, features, steps). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be"channels_last".
Input shape
- If
data_format="channels_last": 3D tensor with shape(batch_size, steps, features). - If
data_format="channels_first": 3D tensor with shape(batch_size, features, steps).
Output shape
- If
data_format="channels_last": 3D tensor with shape(batch_size, downsampled_steps, features). - If
data_format="channels_first": 3D tensor with shape(batch_size, features, downsampled_steps).
Examples
strides=1 and padding="valid":
>>> x = np.array([1., 2., 3., 4., 5.])
>>> x = np.reshape(x, [1, 5, 1])
>>> avg_pool_1d = keras.layers.AveragePooling1D(pool_size=2,
... strides=1, padding="valid")
>>> avg_pool_1d(x)
strides=2 and padding="valid":
>>> x = np.array([1., 2., 3., 4., 5.])
>>> x = np.reshape(x, [1, 5, 1])
>>> avg_pool_1d = keras.layers.AveragePooling1D(pool_size=2,
... strides=2, padding="valid")
>>> avg_pool_1d(x)
strides=1 and padding="same":
>>> x = np.array([1., 2., 3., 4., 5.])
>>> x = np.reshape(x, [1, 5, 1])
>>> avg_pool_1d = keras.layers.AveragePooling1D(pool_size=2,
... strides=1, padding="same")
>>> avg_pool_1d(x)