Embedding layer
- Original Link : https://keras.io/api/layers/core_layers/embedding/
- Last Checked at : 2024-11-24
Embedding
class
keras.layers.Embedding(
input_dim,
output_dim,
embeddings_initializer="uniform",
embeddings_regularizer=None,
embeddings_constraint=None,
mask_zero=False,
weights=None,
lora_rank=None,
**kwargs
)
Turns nonnegative integers (indexes) into dense vectors of fixed size.
e.g. [[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]
This layer can only be used on nonnegative integer inputs of a fixed range.
Example
>>> model = keras.Sequential()
>>> model.add(keras.layers.Embedding(1000, 64))
>>> # The model will take as input an integer matrix of size (batch,
>>> # input_length), and the largest integer (i.e. word index) in the input
>>> # should be no larger than 999 (vocabulary size).
>>> # Now model.output_shape is (None, 10, 64), where `None` is the batch
>>> # dimension.
>>> input_array = np.random.randint(1000, size=(32, 10))
>>> model.compile('rmsprop', 'mse')
>>> output_array = model.predict(input_array)
>>> print(output_array.shape)
(32, 10, 64)
Arguments
- input_dim: Integer. Size of the vocabulary, i.e. maximum integer index + 1.
- output_dim: Integer. Dimension of the dense embedding.
- embeddings_initializer: Initializer for the
embeddings
matrix (seekeras.initializers
). - embeddings_regularizer: Regularizer function applied to the
embeddings
matrix (seekeras.regularizers
). - embeddings_constraint: Constraint function applied to the
embeddings
matrix (seekeras.constraints
). - mask_zero: Boolean, whether or not the input value 0 is a special “padding” value that should be masked out. This is useful when using recurrent layers which may take variable length input. If this is
True
, then all subsequent layers in the model need to support masking or an exception will be raised. Ifmask_zero
is set toTrue
, as a consequence, index 0 cannot be used in the vocabulary (input_dim
should equal size of vocabulary + 1). - weights: Optional floating-point matrix of size
(input_dim, output_dim)
. The initial embeddings values to use. - lora_rank: Optional integer. If set, the layer’s forward pass will implement LoRA (Low-Rank Adaptation) with the provided rank. LoRA sets the layer’s embeddings matrix to non-trainable and replaces it with a delta over the original matrix, obtained via multiplying two lower-rank trainable matrices. This can be useful to reduce the computation cost of fine-tuning large embedding layers. You can also enable LoRA on an existing
Embedding
layer by callinglayer.enable_lora(rank)
.
Input shape
2D tensor with shape: (batch_size, input_length)
.
Output shape
3D tensor with shape: (batch_size, input_length, output_dim)
.