SentencePieceTokenizer
- Original Link : https://keras.io/api/keras_nlp/tokenizers/sentence_piece_tokenizer/
- Last Checked at : 2024-11-26
SentencePieceTokenizer
class
keras_nlp.tokenizers.SentencePieceTokenizer(
proto=None,
sequence_length=None,
dtype="int32",
add_bos=False,
add_eos=False,
**kwargs
)
A SentencePiece tokenizer layer.
This layer provides an implementation of SentencePiece tokenization
as described in the SentencePiece paper
and the SentencePiece package.
The tokenization will run entirely within the Tensorflow graph, and can
be saved inside a keras.Model
.
By default, the layer will output a tf.RaggedTensor
where the last
dimension of the output is ragged after whitespace splitting and sub-word
tokenizing. If sequence_length
is set, the layer will output a dense
tf.Tensor
where all inputs have been padded or truncated to
sequence_length
. The output dtype can be controlled via the dtype
argument, which should be either an integer or string type.
Arguments
- proto: Either a
string
path to a SentencePiece proto file, or abytes
object with a serialized SentencePiece proto. See the SentencePiece repository for more details on the format. - sequence_length: If set, the output will be converted to a dense
tensor and padded/trimmed so all outputs are of
sequence_length
. - add_bos: Add beginning of sentence token to the result.
- add_eos: Add end of sentence token to the result. Token is always
truncated if output is longer than specified
sequence_length
.
References
Examples
From bytes.
def train_sentence_piece_bytes(ds, size):
bytes_io = io.BytesIO()
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=size,
)
return bytes_io.getvalue()
# Train a sentencepiece proto.
ds = tf.data.Dataset.from_tensor_slices(["the quick brown fox."])
proto = train_sentence_piece_bytes(ds, 20)
# Tokenize inputs.
tokenizer = keras_hub.tokenizers.SentencePieceTokenizer(proto=proto)
ds = ds.map(tokenizer)
From a file.
def train_sentence_piece_file(ds, path, size):
with open(path, "wb") as model_file:
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=model_file,
vocab_size=size,
)
# Train a sentencepiece proto.
ds = tf.data.Dataset.from_tensor_slices(["the quick brown fox."])
proto = train_sentence_piece_file(ds, "model.spm", 20)
# Tokenize inputs.
tokenizer = keras_hub.tokenizers.SentencePieceTokenizer(proto="model.spm")
ds = ds.map(tokenizer)
tokenize
method
SentencePieceTokenizer.tokenize(inputs)
Transform input tensors of strings into output tokens.
Arguments
- inputs: Input tensor, or dict/list/tuple of input tensors.
- *args: Additional positional arguments.
- **kwargs: Additional keyword arguments.
detokenize
method
SentencePieceTokenizer.detokenize(inputs)
Transform tokens back into strings.
Arguments
- inputs: Input tensor, or dict/list/tuple of input tensors.
- *args: Additional positional arguments.
- **kwargs: Additional keyword arguments.
get_vocabulary
method
SentencePieceTokenizer.get_vocabulary()
Get the tokenizer vocabulary.
vocabulary_size
method
SentencePieceTokenizer.vocabulary_size()
Get the integer size of the tokenizer vocabulary.
token_to_id
method
SentencePieceTokenizer.token_to_id(token)
Convert a string token to an integer id.
id_to_token
method
SentencePieceTokenizer.id_to_token(id)
Convert an integer id to a string token.