BytePairTokenizer
- Original Link : https://keras.io/api/keras_nlp/tokenizers/byte_pair_tokenizer/
- Last Checked at : 2024-11-26
BytePairTokenizer
class
keras_nlp.tokenizers.BytePairTokenizer(
vocabulary=None,
merges=None,
sequence_length=None,
add_prefix_space=False,
unsplittable_tokens=None,
dtype="int32",
**kwargs
)
Bype-pair encoding tokenizer layer.
This BPE tokenizer provides the same functionality as the official GPT-2
tokenizer. Given the same vocabulary
which maps tokens to ids, and merges
which describes BPE merge rules, it should provide the same output
as OpenAI implementation (https://github.com/openai/gpt-2/blob/master/src/encoder.py).
Different from OpenAI, this implementation is graph-compatible, so you can
use it within a tf.data
pipeline.
If input is a batch of strings (rank > 0):
By default, the layer will output a tf.RaggedTensor
where the last
dimension of the output is ragged. If sequence_length
is set, the layer
will output a dense tf.Tensor
where all inputs have been padded or
truncated to sequence_length
.
If input is a scalar string (rank == 0):
By default, the layer will output a dense tf.Tensor
with static shape
[None]
. If sequence_length
is set, the output will be
a dense tf.Tensor
of shape [sequence_length]
.
Arguments
- vocabulary: string or dict, maps token to integer ids. If it is a string, it should be the file path to a json file.
- merges: string or list, contains the merge rule. If it is a string, it should be the file path to merge rules. The merge rule file should have one merge rule per line.
- sequence_length: int. If set, the output will be
padded or truncated to the
sequence_length
. Defaults toNone
. - add_prefix_space: bool. Whether to add an
initial space to the input. This tokenizer is whitespace aware,
and will tokenize a word with a leading space differently. Adding
a prefix space to the first word will cause it to be tokenized
equivalently to all subsequent words in the sequence.
Defaults to
False
. - unsplittable_tokens: list. A list of strings that will
never be split during the word-level splitting applied before the
byte-pair encoding. This can be used to ensure special tokens map to
unique indices in the vocabulary, even if these special tokens
contain splittable characters such as punctuation. Special tokens
must still be included in
vocabulary
. Defaults toNone
.
Examples
Tokenize
>>> vocab = {"butter": 1, "fly": 2}
>>> merge = ["b u", "t t", "e r", "bu tt", "butt er", "f l", "fl y"]
>>> tokenizer = keras_hub.tokenizers.BytePairTokenizer(vocab, merge)
>>> outputs = tokenizer("butterfly")
>>> np.array(outputs)
array([1, 2], dtype=int32)
>>> seq1, seq2 = tokenizer(["butterfly", "butter"])
>>> np.array(seq1)
array([1, 2])
>>> np.array(seq2)
array([1])
>>> tokenizer = keras_hub.tokenizers.BytePairTokenizer(
... vocab, merge, sequence_length=2)
>>> seq1, seq2 = tokenizer(["butterfly", "butter"])
>>> np.array(seq1)
array([1, 2], dtype=int32)
>>> np.array(seq2)
array([1, 0], dtype=int32)
Detokenize
>>> vocab = {"butter": 1, "fly": 2}
>>> merge = ["b u", "t t", "e r", "bu tt", "butt er", "f l", "fl y"]
>>> tokenizer = keras_hub.tokenizers.BytePairTokenizer(vocab, merge)
>>> tokenizer.detokenize([[1, 2]])
['butterfly']
tokenize
method
BytePairTokenizer.tokenize(inputs)
Transform input tensors of strings into output tokens.
Arguments
- inputs: Input tensor, or dict/list/tuple of input tensors.
- *args: Additional positional arguments.
- **kwargs: Additional keyword arguments.
detokenize
method
BytePairTokenizer.detokenize(inputs)
Transform tokens back into strings.
Arguments
- inputs: Input tensor, or dict/list/tuple of input tensors.
- *args: Additional positional arguments.
- **kwargs: Additional keyword arguments.
get_vocabulary
method
BytePairTokenizer.get_vocabulary()
Get the tokenizer vocabulary as a list of strings tokens.
vocabulary_size
method
BytePairTokenizer.vocabulary_size()
Get the integer size of the tokenizer vocabulary.
token_to_id
method
BytePairTokenizer.token_to_id(token)
Convert a string token to an integer id.
id_to_token
method
BytePairTokenizer.id_to_token(id)
Convert an integer id to a string token.