RobertaTextClassifierPreprocessor layer
- Original Link : https://keras.io/api/keras_nlp/models/roberta/roberta_text_classifier_preprocessor/
- Last Checked at : 2024-11-26
RobertaTextClassifierPreprocessor
class
keras_nlp.models.RobertaTextClassifierPreprocessor(
tokenizer, sequence_length=512, truncate="round_robin", **kwargs
)
A RoBERTa preprocessing layer which tokenizes and packs inputs.
This preprocessing layer will do three things:
- Tokenize any number of input segments using the
tokenizer
. - Pack the inputs together with the appropriate
"<s>"
,"</s>"
and"<pad>"
tokens, i.e., adding a single"<s>"
at the start of the entire sequence,"</s></s>"
at the end of each segment, save the last and a"</s>"
at the end of the entire sequence. - Construct a dictionary with keys
"token_ids"
,"padding_mask"
that can be passed directly to a RoBERTa model.
This layer can be used directly with tf.data.Dataset.map
to preprocess
string data in the (x, y, sample_weight)
format used by
keras.Model.fit
.
Arguments
- tokenizer: A
keras_hub.models.RobertaTokenizer
instance. - sequence_length: The length of the packed inputs.
- truncate: string. The algorithm to truncate a list of batched segments
to fit within
sequence_length
. The value can be eitherround_robin
orwaterfall
:"round_robin"
: Available space is assigned one token at a time in a round-robin fashion to the inputs that still need some, until the limit is reached."waterfall"
: The allocation of the budget is done using a “waterfall” algorithm that allocates quota in a left-to-right manner and fills up the buckets until we run out of budget. It supports an arbitrary number of segments.
Call arguments
- x: A tensor of single string sequences, or a tuple of multiple tensor sequences to be packed together. Inputs may be batched or unbatched. For single sequences, raw python inputs will be converted to tensors. For multiple sequences, pass tensors directly.
- y: Any label data. Will be passed through unaltered.
- sample_weight: Any label weight data. Will be passed through unaltered.
Examples
Directly calling the layer on data.
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"roberta_base_en"
)
# Tokenize and pack a single sentence.
preprocessor("The quick brown fox jumped.")
# Tokenize a batch of single sentences.
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
# Preprocess a batch of sentence pairs.
# When handling multiple sequences, always convert to tensors first!
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
preprocessor((first, second))
# Custom vocabulary.
vocab = {"<s>": 0, "<pad>": 1, "</s>": 2, "<mask>": 3}
vocab = {**vocab, "a": 4, "Ä quick": 5, "Ä fox": 6}
merges = ["Ä q", "u i", "c k", "ui ck", "Ä q uick", "Ä f", "o x", "Ä f ox"]
tokenizer = keras_hub.models.RobertaTokenizer(
vocabulary=vocab,
merges=merges
)
preprocessor = keras_hub.models.RobertaTextClassifierPreprocessor(tokenizer)
preprocessor("a quick fox")
Mapping with tf.data.Dataset
.
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"roberta_base_en"
)
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
label = tf.constant([1, 1])
# Map labeled single sentences.
ds = tf.data.Dataset.from_tensor_slices((first, label))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map unlabeled single sentences.
ds = tf.data.Dataset.from_tensor_slices(first)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map labeled sentence pairs.
ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map unlabeled sentence pairs.
ds = tf.data.Dataset.from_tensor_slices((first, second))
# Watch out for tf.data's default unpacking of tuples here!
# Best to invoke the `preprocessor` directly in this case.
ds = ds.map(
lambda first, second: preprocessor(x=(first, second)),
num_parallel_calls=tf.data.AUTOTUNE,
)
from_preset
method
RobertaTextClassifierPreprocessor.from_preset(
preset, config_file="preprocessor.json", **kwargs
)
Instantiate a keras_hub.models.Preprocessor
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
- a built-in preset identifier like
'bert_base_en'
- a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en'
- a Hugging Face handle like
'hf://user/bert_base_en'
- a path to a local preset directory like
'./bert_base_en'
For any Preprocessor
subclass, you can run cls.presets.keys()
to
list all built-in presets available on the class.
As there are usually multiple preprocessing classes for a given model,
this method should be called on a specific subclass like
keras_hub.models.BertTextClassifierPreprocessor.from_preset()
.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
Examples
# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.GemmaCausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.BertTextClassifierPreprocessor.from_preset(
"bert_base_en",
)
Preset name | Parameters | Description |
---|---|---|
roberta_base_en | 124.05M | 12-layer RoBERTa model where case is maintained.Trained on English Wikipedia, BooksCorpus, CommonCraw, and OpenWebText. |
roberta_large_en | 354.31M | 24-layer RoBERTa model where case is maintained.Trained on English Wikipedia, BooksCorpus, CommonCraw, and OpenWebText. |
xlm_roberta_base_multi | 277.45M | 12-layer XLM-RoBERTa model where case is maintained. Trained on CommonCrawl in 100 languages. |
xlm_roberta_large_multi | 558.84M | 24-layer XLM-RoBERTa model where case is maintained. Trained on CommonCrawl in 100 languages. |
tokenizer
property
keras_nlp.models.RobertaTextClassifierPreprocessor.tokenizer
The tokenizer used to tokenize strings.