AlbertMaskedLMPreprocessor layer
- Original Link : https://keras.io/api/keras_nlp/models/albert/albert_masked_lm_preprocessor/
- Last Checked at : 2024-11-26
AlbertMaskedLMPreprocessor
class
keras_nlp.models.AlbertMaskedLMPreprocessor(
tokenizer,
sequence_length=512,
truncate="round_robin",
mask_selection_rate=0.15,
mask_selection_length=96,
mask_token_rate=0.8,
random_token_rate=0.1,
**kwargs
)
ALBERT preprocessing for the masked language modeling task.
This preprocessing layer will prepare inputs for a masked language modeling
task. It is primarily intended for use with the
keras_hub.models.AlbertMaskedLM
task model. Preprocessing will occur in
multiple steps.
- Tokenize any number of input segments using the
tokenizer
. - Pack the inputs together with the appropriate
"<s>"
,"</s>"
and"<pad>"
tokens, i.e., adding a single"<s>"
at the start of the entire sequence,"</s></s>"
between each segment, and a"</s>"
at the end of the entire sequence. - Randomly select non-special tokens to mask, controlled by
mask_selection_rate
. - Construct a
(x, y, sample_weight)
tuple suitable for training with akeras_hub.models.AlbertMaskedLM
task model.
Arguments
- tokenizer: A
keras_hub.models.AlbertTokenizer
instance. - sequence_length: The length of the packed inputs.
- mask_selection_rate: The probability an input token will be dynamically masked.
- mask_selection_length: The maximum number of masked tokens supported by the layer.
- mask_token_rate: float.
mask_token_rate
must be between 0 and 1 which indicates how often the mask_token is substituted for tokens selected for masking. Defaults to0.8
. - random_token_rate: float.
random_token_rate
must be between 0 and 1 which indicates how often a random token is substituted for tokens selected for masking. Default is 0.1. Note: mask_token_rate + random_token_rate <= 1, and for (1 - mask_token_rate - random_token_rate), the token will not be changed. Defaults to0.1
. - truncate: string. The algorithm to truncate a list of batched segments
to fit within
sequence_length
. The value can be eitherround_robin
orwaterfall
:"round_robin"
: Available space is assigned one token at a time in a round-robin fashion to the inputs that still need some, until the limit is reached."waterfall"
: The allocation of the budget is done using a “waterfall” algorithm that allocates quota in a left-to-right manner and fills up the buckets until we run out of budget. It supports an arbitrary number of segments.
Examples
Directly calling the layer on data.
preprocessor = keras_hub.models.AlbertMaskedLMPreprocessor.from_preset(
"albert_base_en_uncased"
)
# Tokenize and mask a single sentence.
preprocessor("The quick brown fox jumped.")
# Tokenize and mask a batch of single sentences.
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
# Tokenize and mask sentence pairs.
# In this case, always convert input to tensors before calling the layer.
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
preprocessor((first, second))
Mapping with tf.data.Dataset
.
preprocessor = keras_hub.models.AlbertMaskedLMPreprocessor.from_preset(
"albert_base_en_uncased"
)
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
# Map single sentences.
ds = tf.data.Dataset.from_tensor_slices(first)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map sentence pairs.
ds = tf.data.Dataset.from_tensor_slices((first, second))
# Watch out for tf.data's default unpacking of tuples here!
# Best to invoke the `preprocessor` directly in this case.
ds = ds.map(
lambda first, second: preprocessor(x=(first, second)),
num_parallel_calls=tf.data.AUTOTUNE,
)
from_preset
method
AlbertMaskedLMPreprocessor.from_preset(
preset, config_file="preprocessor.json", **kwargs
)
Instantiate a keras_hub.models.Preprocessor
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
- a built-in preset identifier like
'bert_base_en'
- a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en'
- a Hugging Face handle like
'hf://user/bert_base_en'
- a path to a local preset directory like
'./bert_base_en'
For any Preprocessor
subclass, you can run cls.presets.keys()
to
list all built-in presets available on the class.
As there are usually multiple preprocessing classes for a given model,
this method should be called on a specific subclass like
keras_hub.models.BertTextClassifierPreprocessor.from_preset()
.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
Examples
# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.GemmaCausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.BertTextClassifierPreprocessor.from_preset(
"bert_base_en",
)
Preset name | Parameters | Description |
---|---|---|
albert_base_en_uncased | 11.68M | 12-layer ALBERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
albert_large_en_uncased | 17.68M | 24-layer ALBERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
albert_extra_large_en_uncased | 58.72M | 24-layer ALBERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
albert_extra_extra_large_en_uncased | 222.60M | 12-layer ALBERT model where all input is lowercased. Trained on English Wikipedia + BooksCorpus. |
tokenizer
property
keras_nlp.models.AlbertMaskedLMPreprocessor.tokenizer
The tokenizer used to tokenize strings.