TextClassifier
- Original Link : https://keras.io/api/keras_nlp/base_classes/text_classifier/
- Last Checked at : 2024-11-26
TextClassifier
class
keras_nlp.models.TextClassifier(*args, compile=True, **kwargs)
Base class for all classification tasks.
TextClassifier
tasks wrap a keras_hub.models.Backbone
and
a keras_hub.models.Preprocessor
to create a model that can be used for
sequence classification. TextClassifier
tasks take an additional
num_classes
argument, controlling the number of predicted output classes.
To fine-tune with fit()
, pass a dataset containing tuples of (x, y)
labels where x
is a string and y
is a integer from [0, num_classes)
.
All TextClassifier
tasks include a from_preset()
constructor which can be
used to load a pre-trained config and weights.
Some, but not all, classification presets include classification head
weights in a task.weights.h5
file. For these presets, you can omit passing
num_classes
to restore the saved classification head. For all presets, if
num_classes
is passed as a kwarg to from_preset()
, the classification
head will be randomly initialized.
Example
# Load a BERT classifier with pre-trained weights.
classifier = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
# Fine-tune on IMDb movie reviews (or any dataset).
imdb_train, imdb_test = tfds.load(
"imdb_reviews",
split=["train", "test"],
as_supervised=True,
batch_size=16,
)
classifier.fit(imdb_train, validation_data=imdb_test)
# Predict two new examples.
classifier.predict(["What an amazing movie!", "A total waste of my time."])
from_preset
method
TextClassifier.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Task
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
- a built-in preset identifier like
'bert_base_en'
- a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en'
- a Hugging Face handle like
'hf://user/bert_base_en'
- a path to a local preset directory like
'./bert_base_en'
For any Task
subclass, you can run cls.presets.keys()
to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_hub.models.CausalLM.from_preset()
, or
from a model class like keras_hub.models.BertTextClassifier.from_preset()
.
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
- load_weights: bool. If
True
, saved weights will be loaded into the model architecture. IfFalse
, all weights will be randomly initialized.
Examples
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
compile
method
TextClassifier.compile(optimizer="auto", loss="auto", metrics="auto", **kwargs)
Configures the TextClassifier
task for training.
The TextClassifier
task extends the default compilation signature of
keras.Model.compile
with defaults for optimizer
, loss
, and
metrics
. To override these defaults, pass any value
to these arguments during compilation.
Arguments
- optimizer:
"auto"
, an optimizer name, or akeras.Optimizer
instance. Defaults to"auto"
, which uses the default optimizer for the given model and task. Seekeras.Model.compile
andkeras.optimizers
for more info on possibleoptimizer
values. - loss:
"auto"
, a loss name, or akeras.losses.Loss
instance. Defaults to"auto"
, where akeras.losses.SparseCategoricalCrossentropy
loss will be applied for the classification task. Seekeras.Model.compile
andkeras.losses
for more info on possibleloss
values. - metrics:
"auto"
, or a list of metrics to be evaluated by the model during training and testing. Defaults to"auto"
, where akeras.metrics.SparseCategoricalAccuracy
will be applied to track the accuracy of the model during training. Seekeras.Model.compile
andkeras.metrics
for more info on possiblemetrics
values. - **kwargs: See
keras.Model.compile
for a full list of arguments supported by the compile method.
save_to_preset
method
TextClassifier.save_to_preset(preset_dir)
Save task to a preset directory.
Arguments
- preset_dir: The path to the local model preset directory.
preprocessor
property
keras_nlp.models.TextClassifier.preprocessor
A keras_hub.models.Preprocessor
layer used to preprocess input.
backbone
property
keras_nlp.models.TextClassifier.backbone
A keras_hub.models.Backbone
model with the core architecture.