XLMRobertaTokenizer
- Original Link : https://keras.io/api/keras_hub/models/xlm_roberta/xlm_roberta_tokenizer/
- Last Checked at : 2024-11-26
XLMRobertaTokenizer class
keras_hub.tokenizers.XLMRobertaTokenizer(proto, **kwargs)An XLM-RoBERTa tokenizer using SentencePiece subword segmentation.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.SentencePieceTokenizer. Unlike the
underlying tokenizer, it will check for all special tokens needed by
XLM-RoBERTa models and provides a from_preset() method to automatically
download a matching vocabulary for an XLM-RoBERTa preset.
Note: If you are providing your own custom SentencePiece model, the original fairseq implementation of XLM-RoBERTa re-maps some token indices from the underlying sentencepiece output. To preserve compatibility, we do the same re-mapping here.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor with static shape [None].
Arguments
- proto: Either a
stringpath to a SentencePiece proto file or abytesobject with a serialized SentencePiece proto. See the SentencePiece repository for more details on the format.
Examples
tokenizer = keras_hub.models.XLMRobertaTokenizer.from_preset(
"xlm_roberta_base_multi",
)
# Unbatched inputs.
tokenizer("the quick brown fox")
# Batched inputs.
tokenizer(["the quick brown fox", "Ø§ÙØ£Ø±Ø¶ ÙØ±ÙÙØ©"])
# Detokenization.
tokenizer.detokenize(tokenizer("the quick brown fox"))
# Custom vocabulary
def train_sentencepiece(ds, vocab_size):
bytes_io = io.BytesIO()
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=vocab_size,
model_type="WORD",
unk_id=0,
bos_id=1,
eos_id=2,
)
return bytes_io.getvalue()
ds = tf.data.Dataset.from_tensor_slices(
["the quick brown fox", "the earth is round"]
)
proto = train_sentencepiece(ds, vocab_size=10)
tokenizer = keras_hub.models.XLMRobertaTokenizer(proto=proto)from_preset method
XLMRobertaTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)Instantiate a keras_hub.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as
one of:
- a built-in preset identifier like
'bert_base_en' - a Kaggle Models handle like
'kaggle://user/bert/keras/bert_base_en' - a Hugging Face handle like
'hf://user/bert_base_en' - a path to a local preset directory like
'./bert_base_en'
For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset(), or from
a model class like keras_hub.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
- preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
- load_weights: bool. If
True, the weights will be loaded into the model architecture. IfFalse, the weights will be randomly initialized.
Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])| Preset name | Parameters | Description |
|---|---|---|
| xlm_roberta_base_multi | 277.45M | 12-layer XLM-RoBERTa model where case is maintained. Trained on CommonCrawl in 100 languages. |
| xlm_roberta_large_multi | 558.84M | 24-layer XLM-RoBERTa model where case is maintained. Trained on CommonCrawl in 100 languages. |