StableDiffusion3Backbone model

source

StableDiffusion3Backbone class

keras_hub.models.StableDiffusion3Backbone(
    mmdit_patch_size,
    mmdit_hidden_dim,
    mmdit_num_layers,
    mmdit_num_heads,
    mmdit_position_size,
    vae,
    clip_l,
    clip_g,
    t5=None,
    latent_channels=16,
    output_channels=3,
    num_train_timesteps=1000,
    shift=3.0,
    height=None,
    width=None,
    data_format=None,
    dtype=None,
    **kwargs
)

Stable Diffusion 3 core network with hyperparameters.

This backbone imports CLIP and T5 models as text encoders and implements the base MMDiT and VAE networks for the Stable Diffusion 3 model.

The default constructor gives a fully customizable, randomly initialized MMDiT and VAE models with any hyperparameters. To load preset architectures and weights, use the from_preset constructor.

Arguments

  • mmdit_patch_size: int. The size of each square patch in the input image in MMDiT.
  • mmdit_hidden_dim: int. The size of the transformer hidden state at the end of each transformer layer in MMDiT.
  • mmdit_num_layers: int. The number of transformer layers in MMDiT.
  • mmdit_num_heads: int. The number of attention heads for each transformer in MMDiT.
  • mmdit_position_size: int. The size of the height and width for the position embedding in MMDiT.
  • vae: The VAE used for transformations between pixel space and latent space.
  • clip_l: The CLIP text encoder for encoding the inputs.
  • clip_g: The CLIP text encoder for encoding the inputs.
  • t5: optional The T5 text encoder for encoding the inputs.
  • latent_channels: int. The number of channels in the latent. Defaults to 16.
  • output_channels: int. The number of channels in the output. Defaults to 3.
  • num_train_timesteps: int. The number of diffusion steps to train the model. Defaults to 1000.
  • shift: float. The shift value for the timestep schedule. Defaults to 3.0.
  • height: optional int. The output height of the image.
  • width: optional int. The output width of the image.
  • data_format: None or str. If specified, either "channels_last" or "channels_first". The ordering of the dimensions in the inputs. "channels_last" corresponds to inputs with shape (batch_size, height, width, channels) while "channels_first" corresponds to inputs with shape (batch_size, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".
  • dtype: string or keras.mixed_precision.DTypePolicy. The dtype to use for the models computations and weights. Note that some computations, such as softmax and layer normalization will always be done a float32 precision regardless of dtype.

Example

# Pretrained Stable Diffusion 3 model.
model = keras_hub.models.StableDiffusion3Backbone.from_preset(
    "stable_diffusion_3_medium"
)
# Randomly initialized Stable Diffusion 3 model with custom config.
vae = keras_hub.models.VAEBackbone(...)
clip_l = keras_hub.models.CLIPTextEncoder(...)
clip_g = keras_hub.models.CLIPTextEncoder(...)
model = keras_hub.models.StableDiffusion3Backbone(
    mmdit_patch_size=2,
    mmdit_num_heads=4,
    mmdit_hidden_dim=256,
    mmdit_depth=4,
    mmdit_position_size=192,
    vae=vae,
    clip_l=clip_l,
    clip_g=clip_g,
)

source

from_preset method

StableDiffusion3Backbone.from_preset(preset, load_weights=True, **kwargs)

Instantiate a keras_hub.models.Backbone from a model preset.

A preset is a directory of configs, weights and other file assets used to save and load a pre-trained model. The preset can be passed as a one of:

  1. a built-in preset identifier like 'bert_base_en'
  2. a Kaggle Models handle like 'kaggle://user/bert/keras/bert_base_en'
  3. a Hugging Face handle like 'hf://user/bert_base_en'
  4. a path to a local preset directory like './bert_base_en'

This constructor can be called in one of two ways. Either from the base class like keras_hub.models.Backbone.from_preset(), or from a model class like keras_hub.models.GemmaBackbone.from_preset(). If calling from the base class, the subclass of the returning object will be inferred from the config in the preset directory.

For any Backbone subclass, you can run cls.presets.keys() to list all built-in presets available on the class.

Arguments

  • preset: string. A built-in preset identifier, a Kaggle Models handle, a Hugging Face handle, or a path to a local directory.
  • load_weights: bool. If True, the weights will be loaded into the model architecture. If False, the weights will be randomly initialized.

Examples

# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
    "gemma_2b_en",
)
# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
    "bert_base_en",
    load_weights=False,
)
Preset nameParametersDescription
stable_diffusion_3_medium2.99B3 billion parameter, including CLIP L and CLIP G text encoders, MMDiT generative model, and VAE autoencoder. Developed by Stability AI.